
An Introduction to
Probabilistic Soft Logic

Eriq Augustine and Golnoosh Farnadi
UC Santa Cruz
MLTrain 2018

psl.linqs.org
github.com/linqs/psl

http://psl.linqs.org
https://github.com/linqs/psl

Probabilistic Soft Logic (PSL) Overview

● Declarative probabilistic programming language
for structured prediction
○ Scalable -- inference in PSL is highly efficient
○ Interpretable -- models are specified as weighted rules
○ Expressive -- can model complex dependencies, latent

variables, handle missing data
● Open-source: psl.linqs.org

https://psl.linqs.org/

PSL Key Capabilities

● Rich representation language based on logic
allows
○ Declarative representation of models
○ Well-suited to domains with structure (e.g., graphs and

networks)
● Probabilistic Interpretation

○ Supports uncertainty and “soft” logic
○ Semantics defined via specific from of graphical model

referred to as a Hinge-loss Markov Random Field

PSL Application Types

● Effective on wide range of problem types

○ data integration, information fusion, & entity resolution

○ recommender systems & user modeling

○ computational social science

○ knowledge graph construction

PSL Sample Application Domains

● Competitive Diffusion in Social Networks
○ Broecheler et al., SocialCom10

● Social Group Modeling
○ Huang et al., Social Networks and Social Media Analysis Workshop NIPS12

● Demographic Prediction & Knowledge Fusion for User Modeling
○ Farnadi et al., MLJ17

● Inferring Organization Attitudes in Social Media
○ Kumar et al., ASONAM16

● Modeling Student Engagement in MOOCs
○ Ramesh et al., AAAI13; Ramesh et al., L@S14; Tomkins et al. EDM16

● Personalization and Explanation in Hybrid Recommender Systems
○ Kouki et al., RecSys15; Kouki et al., RecSys17

● Detecting Cyberbullying in Social Media
○ Tomkins et al., ASONAM

Outline

● Basic Introduction to PSL
● Getting Started with PSL
● PSL Examples

○ Collective Classification
○ Link Prediction
○ Entity Resolution
○ Knowledge Graph Construction

● Conclusion

Why Collective
Classification?

Weather Forecasting

Goal: Predict the probability of rain in Santa Cruz.

VS

Local Signals for Prediction

Local sensors provide useful signals for prediction.

?

Relational Signals for Prediction

Sensors in nearby cities provide useful relational information.

32 Miles

Santa CruzSan Jose

?

Relational Signals for Prediction

Sensors in nearby cities provide useful relational information.

32 Miles

Santa Cruz

San Diego

San Jose

460 Miles

?

Weather Forecasting

What if we wanted to predict for multiple cities?

32 Miles

Santa CruzSan Jose

? ?

Diagram for Weather Forecasting

San
Jose

Santa
Cruzsensor sensor

Diagram for Weather Forecasting

San
Jose

Santa
Cruzsensor sensor

Observed Value Prediction

Diagram for Weather Forecasting

San
Jose

Santa
Cruzsensor sensor

RSJ SS
J

RSCSS
C

RSCSS
C

RSJ SS
J

Local Predictive Model

Date SSC RSC

1950-06-06 22.2°C 0

1951-06-06 17.1°C 1

...

2017-06-06 23.4°C 0

Date SSJ RSJ

1950-06-06 25.0°C 0

1951-06-06 20.1°C 1

...

2017-06-06 24.5°C 0

Pr(RSC|SSC) Pr(RSJ|SSJ)

Using historical data, we learn independent models for each city.

Incorrect Sensor Reading

Common problem: we get a faulty sensor reading.

Santa Cruz

SS
C

-22°C

RSCSS
C

RSJ SS
J

Incorrect Local Predictions

-22°C

RSCSS
C

RSJ SS
J

Incorrect Local Predictions

-22°C

Pr(RSC|SSC)

Pr(RSC) We use faulty
reading to predict
with our learned
local model.

RSCSS
C

RSJ SS
J

Incorrect Local Predictions

-22°C

Pr(RSC|SSC)

Pr(RSC) Common outcome:
local model makes
incorrect prediction.

Relational Signals for Prediction

Recall: sensors in nearby cities provide useful relational information!

32 Miles

Santa CruzSan Jose

RSCSS
C

RSJ SS
J

Leveraging Relational Signals

-22°C 24°C

RSCSS
C

RSJ SS
J

Leveraging Relational Signals

-22°C 24°C
DSC-S

J

32 Miles

Distance variable captures closeness between cities.

RSCSS
C

RSJ SS
J

Leveraging Relational Signals

-22°C 24°C

Distance variable captures closeness between cities.

Pr(RSC,RSJ|SSC,SSJ,DSC-SJ
)

DSC-S
J

32 Miles

RSC
RSJ

RSCSS
C

RSJ SS
J

Leveraging Relational Signals

-22°C 24°C

Joint modeling: forecasts in nearby cities should be similar.

Pr(RSC,RSJ|SSC,SSJ,DSC-SJ
)

Pr(RSC,RSJ)

DSC-S
J

32 Miles

RSCSS
C

RSJ SS
J

Leveraging Relational Signals

-22°C 24°C

Joint modeling: forecasts in nearby cities should be similar.

Pr(RSC,RSJ|SSC,SSJ,DSC-SJ
)

Marginal Probability
Pr(RSC)

DSC-S
J

32 Miles

Combining Multiple Relational Signals

Nearby cities should have a greater relational influence than far away cities.

32 Miles

Santa Cruz

San Diego

San Jose

460 Miles

RSCSS
C

RSJ SS
J

Relative Influences of Neighbors

-22°C 24°C
DSC-S

J

32 Miles

RSDSS
D

 25°C

DSC-S
D

460 Miles

RSCSS
C

RSJ SS
J

Relative Influences of Neighbors

-22°C 24°C
DSC-S

J

32 Miles

Strength of collective influence depends on distance between cities.

RSDSS
D

 25°C

DSC-S
D

460 Miles

RSCSS
C

RSJ SS
J

Relative Influences of Neighbors

-22°C 24°C
DSC-S

J

32 Miles

Distance variables DSC-SJ and DSC-SD mediate affinity of forecasts between cities.

RSDSS
D

 25°C

DSC-S
D

460 Miles

Pr(RSC,RSJ,RSD|SSC,SSJ,SSD,DSC-SJ,DSC-SD
)

RSCSS
C

RSJ SS
J

Markov Random Fields (MRFs)

-22°C 24°C
DSC-S

J

32 Miles

This graphical model is a Markov Random Field (MRF).

RSDSS
D

 25°C

DSC-S
D

460 Miles

Pr(RSC,RSJ,RSD|SSC,SSJ,SSD,DSC-SJ,DSC-SD
)

PSL -
Syntax and Semantics

PSL

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)
1.0: SenseRain(City) -> Rainy(City)

PSL uses first order logic-like rules.

PSL

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)
1.0: SenseRain(City) -> Rainy(City)

Weight VariablePredicate

PSL uses first order logic-like rules.

PSL - Templating Language for MRFs

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)

1.0: SenseRain(City) -> Rainy(City)

PSL - Templating Language for MRFs

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)

1.0: SenseRain(City) -> Rainy(City)

Rule templates instantiated with data become "Ground Rules".

5.0: Rainy('Cruz') & Distance('Cruz', 'Jose') -> Rainy('Jose')
5.0: Rainy('Cruz') & Distance('Cruz', 'Diego') -> Rainy('Diego')

1.0: SenseRain('Cruz') -> Rainy('Cruz')
1.0: SenseRain('Jose') -> Rainy('Jose')
1.0: SenseRain('Diego') -> Rainy('Diego')

PSL - Templating Language for MRFs

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)

RSC RSJ
DSC-S

J

RSD
DSC-S

D

RSC SS
C

RSJ SS
J

RSDSS
D

1.0: SenseRain(City) -> Rainy(City)

Ground rules directly map to potential functions in the MRF.

PSL - Templating Language for MRFs

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)
1.0: SenseRain(City) -> Rainy(City)

RSCSS
C

RSJ SS
J

DSC-S
J

RSDSS
D

DSC-S
D

5.0: Rainy('Cruz') & Distance('Cruz', 'Jose') -> Rainy('Jose')
5.0: Rainy('Cruz') & Distance('Cruz', 'Diego') -> Rainy('Diego')
1.0: SenseRain('Cruz') -> Rainy('Cruz')
1.0: SenseRain('Jose') -> Rainy('Jose')
1.0: SenseRain('Diego') -> Rainy('Diego')

PSL - MRF Inference

Sum over all
ground rules.

The weight for
a rule.

The "satisfaction"
of a ground rule.
1/0 for discrete
logic.

PSL - MRF Inference

PSL - MRF Inference

Discrete MRF Inference == Weighted MAX-SAT == NP-Hard

PSL - Continuous Relaxation

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)

Relax "hard" satisfiability of each rule.

PSL - Continuous Relaxation

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)

First convert the rule to Disjunctive Normal Form.

Rainy(City1) ^ Distance(City1, City2) -> Rainy(City2)

¬(Rainy(City1) ^ Distance(City1, City2)) v Rainy(City2)

¬Rainy(City1) v ¬Distance(City1, City2) v Rainy(City2)

PSL - Continuous Relaxation

● P ^ Q = max(0.0, P + Q - 1.0)
● P v Q = min(1.0, P + Q)
● ¬Q = 1.0 - Q

Use Łukasiewicz logic to relax hard logical operators.

¬Rainy(City1) v ¬Distance(City1, City2) v Rainy(City2)

min(1.0, ¬Rainy(City1) + ¬Distance(City1, City2)) v Rainy(City2)

min(1.0, ¬Rainy(City1) + ¬Distance(City1, City2) + Rainy(City2)

min(1.0, (1.0 - Rainy(City1)) + (1.0 - Distance(City1, City2))
+ Rainy(City2))

min(1.0, 2.0 - (Rainy(City1) + Distance(City1, City2))
+ Rainy(City2))

PSL - Continuous Relaxation

Apply Łukasiewicz logic.

Satisfaction:
min(1.0, 2.0 - (Rainy(City1) + Distance(City1, City2)) + Rainy(City2))

PSL - Continuous Relaxation

Apply Łukasiewicz logic to form a Hinge-Loss MRF.

Distance to satisfaction:
1.0 - min(1.0, 2.0 - (Rainy(City1) + Distance(City1, City2)) + Rainy(City2))

PSL - HL-MRF Inference

HL-MRF Inference == Sum of Convex Function == Convex!
Solve with Alternating Direction Method of Multipliers (ADMM)

https://web.stanford.edu/~boyd/admm.html

https://web.stanford.edu/~boyd/admm.html

PSL - Rules to Assignments

Data
Rules

Ground Rules Potential
Functions

Random
Variable

Assignments

Grounding

Łukasiewicz
Relaxation Inference

