An Introduction to Probabilistic Soft Logic

Eriq Augustine and Golnoosh Farnadi UC Santa Cruz MLTrain 2018

psl.linqs.org github.com/linqs/psl

Probabilistic Soft Logic (PSL) Overview

- Declarative probabilistic programming language for structured prediction
 - Scalable -- inference in PSL is highly efficient
 - Interpretable -- models are specified as weighted rules
 - Expressive -- can model complex dependencies, latent variables, handle missing data
- Open-source: <u>psl.lings.org</u>

PSL Key Capabilities

- Rich representation language based on logic allows
 - Declarative representation of models
 - Well-suited to domains with structure (e.g., graphs and networks)
- Probabilistic Interpretation
 - Supports uncertainty and "soft" logic
 - Semantics defined via specific from of graphical model referred to as a *Hinge-loss Markov Random Field*

PSL Application Types

- Effective on wide range of problem types
 - o data integration, information fusion, & entity resolution
 - recommender systems & user modeling
 - computational social science
 - knowledge graph construction

PSL Sample Application Domains

- Competitive Diffusion in Social Networks

 Broecheler et al., SocialCom10
- Social Group Modeling
 - Huang et al., Social Networks and Social Media Analysis Workshop NIPS12
- Demographic Prediction & Knowledge Fusion for User Modeling
 - Farnadi et al., MLJ17
- Inferring Organization Attitudes in Social Media

 Kumar et al., ASONAM16
- Modeling Student Engagement in MOOCs

 Ramesh et al., AAAI13; Ramesh et al., L@S14; Tomkins et al. EDM16
- Personalization and Explanation in Hybrid Recommender Systems

 Kouki et al., RecSys15; Kouki et al., RecSys17

 Detecting Cyberbullying in Social Media

 Tomkins et al., ASONAM

Outline

- Basic Introduction to PSL
- Getting Started with PSL
- PSL Examples
 - Collective Classification
 - Link Prediction
 - Entity Resolution
 - Knowledge Graph Construction
- Conclusion

Why Collective

Classification?

Weather Forecasting

Goal: Predict the probability of rain in Santa Cruz.

VS

Local Signals for Prediction

Local sensors provide useful signals for prediction.

Relational Signals for Prediction

Sensors in nearby cities provide useful relational information.

Relational Signals for Prediction

Sensors in nearby cities provide useful relational information.

Weather Forecasting

What if we wanted to predict for multiple cities?

Diagram for Weather Forecasting

Diagram for Weather Forecasting

Diagram for Weather Forecasting

Local Predictive Model

Using historical data, we learn independent models for each city.

	C
(R_{SJ})	S

_		
Date	S _{SJ}	R _{sJ}
1950-06-06	25.0°C	0
1951-06-06	20.1°C	1
•••	• • •	• • •
2017-06-06	24.5°C	0

$$Pr(R_{SC}|S_{SC})$$

$$Pr(R_{SJ}|S_{SJ})$$

Incorrect Sensor Reading

Common problem: we get a faulty sensor reading.

Incorrect Local Predictions

Incorrect Local Predictions

We use faulty reading to predict with our learned local model.

Incorrect Local Predictions

Relational Signals for Prediction

Recall: sensors in nearby cities provide useful relational information!

Distance variable captures closeness between cities.

Distance variable captures closeness between cities.

Joint modeling: forecasts in nearby cities should be similar.

Joint modeling: forecasts in nearby cities should be similar.

Combining Multiple Relational Signals

Nearby cities should have a greater relational influence than far away cities.

Relative Influences of Neighbors

Relative Influences of Neighbors

Strength of collective influence depends on distance between cities.

Relative Influences of Neighbors

Distance variables D_{SC-SJ} and D_{SC-SD} mediate affinity of forecasts between cities.

Markov Random Fields (MRFs)

This graphical model is a Markov Random Field (MRF).

Syntax and Semantics

PSL -

PSL

PSL uses first order logic-like rules.

```
5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)
1.0: SenseRain(City) -> Rainy(City)
```

PSL

PSL uses first order logic-like rules.

PSL - Templating Language for MRFs

```
5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)
```

```
1.0: SenseRain(City) -> Rainy(City)
```

PSL - Templating Language for MRFs

Rule templates instantiated with data become "Ground Rules".

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)

```
5.0: Rainy('Cruz') & Distance('Cruz', 'Jose') -> Rainy('Jose')
5.0: Rainy('Cruz') & Distance('Cruz', 'Diego') -> Rainy('Diego')
```

1.0: SenseRain(City) -> Rainy(City)

```
1.0: SenseRain('Cruz') -> Rainy('Cruz')
1.0: SenseRain('Jose') -> Rainy('Jose')
1.0: SenseRain('Diego') -> Rainy('Diego')
```

PSL - Templating Language for MRFs

Ground rules directly map to potential functions in the MRF.

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)

1.0: SenseRain(City)

R_{SC} S_S R_{SJ} S_S

-> Rainy(City)

PSL - Templating Language for MRFs

```
5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)
1.0: SenseRain(City) -> Rainy(City)
```


PSL - MRF Inference

Sum over all ground rules.

The weight for a rule.

The "satisfaction" of a ground rule.
1/0 for discrete logic.

PSL - MRF Inference

$$P(Y|X) \propto exp(\sum_{i}^{G} w_{i}\phi_{i})$$

$$\operatorname{argmax}_{X} \sum_{i}^{G} w_{i} \phi_{i}$$

PSL - MRF Inference

Discrete MRF Inference == Weighted MAX-SAT == NP-Hard

$$\underset{i}{\operatorname{argmax}}_{X} \sum_{i}^{G} w_{i} \phi_{i}$$

Relax "hard" satisfiability of each rule.

```
5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)
```

First convert the rule to Disjunctive Normal Form.

```
5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)
```

```
Rainy(City1) ^ Distance(City1, City2) -> Rainy(City2)
¬(Rainy(City1) ^ Distance(City1, City2)) v Rainy(City2)
¬Rainy(City1) v ¬Distance(City1, City2) v Rainy(City2)
```

Use Łukasiewicz logic to relax hard logical operators.

- $P ^ Q = max(0.0, P + Q 1.0)$
- $P \vee Q = min(1.0, P + Q)$
- $\bullet \quad \neg Q = 1.0 Q$

Apply Łukasiewicz logic.

```
¬Rainy(City1) v ¬Distance(City1, City2) v Rainy(City2)
min(1.0, ¬Rainy(City1) + ¬Distance(City1, City2)) v Rainy(City2)
min(1.0, ¬Rainy(City1) + ¬Distance(City1, City2) + Rainy(City2)
min(1.0, (1.0 - Rainy(City1)) + (1.0 - Distance(City1, City2))
   + Rainy(City2))
min(1.0, 2.0 - (Rainy(City1) + Distance(City1, City2))
   + Rainy(City2))
```

Apply Łukasiewicz logic to form a Hinge-Loss MRF.

Satisfaction:

Distance to satisfaction:

PSL - HL-MRF Inference

HL-MRF Inference == Sum of Convex Function == Convex!
Solve with Alternating Direction Method of Multipliers (ADMM)

$$\underset{i}{\operatorname{argmax}}_{X} \sum_{i}^{G} w_{i} \phi_{i}$$

PSL - Rules to Assignments

