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Probabilistic Soft Logic (PSL) Overview

● Declarative probabilistic programming language 
for structured prediction
○ Scalable -- inference in PSL is highly efficient
○ Interpretable -- models are specified as weighted rules
○ Expressive -- can model complex dependencies, latent 

variables, handle missing data
● Open-source: psl.linqs.org

https://psl.linqs.org/


PSL Key Capabilities

● Rich representation language based on logic 
allows
○ Declarative representation of models
○ Well-suited to domains with structure (e.g., graphs and 

networks)
● Probabilistic Interpretation

○ Supports uncertainty and “soft” logic
○ Semantics defined via specific from of graphical model 

referred to as a Hinge-loss Markov Random Field



PSL Application Types

● Effective on wide range of problem types

○ data integration, information fusion, & entity resolution 

○ recommender systems & user modeling

○ computational social science

○ knowledge graph construction



PSL Sample Application Domains

● Competitive Diffusion in Social Networks
○ Broecheler et al., SocialCom10

● Social Group Modeling
○ Huang et al., Social Networks and Social Media Analysis Workshop NIPS12

● Demographic Prediction & Knowledge Fusion for User Modeling
○ Farnadi et al., MLJ17

● Inferring Organization Attitudes in Social Media
○ Kumar et al., ASONAM16

● Modeling Student Engagement in MOOCs
○ Ramesh et al., AAAI13; Ramesh et al., L@S14; Tomkins et al. EDM16

● Personalization and Explanation in Hybrid Recommender Systems
○ Kouki et al., RecSys15; Kouki et al., RecSys17

● Detecting Cyberbullying in Social Media
○ Tomkins et al., ASONAM



Outline

● Basic Introduction to PSL
● Getting Started with PSL
● PSL Examples

○ Collective Classification
○ Link Prediction
○ Entity Resolution
○ Knowledge Graph Construction

● Conclusion



Why Collective 
Classification?



Weather Forecasting

Goal: Predict the probability of rain in Santa Cruz.

VS



Local Signals for Prediction

Local sensors provide useful signals for prediction.

?



Relational Signals for Prediction

Sensors in nearby cities provide useful relational information.

32 Miles

Santa CruzSan Jose

?



Relational Signals for Prediction

Sensors in nearby cities provide useful relational information.

32 Miles

Santa Cruz

San Diego

San Jose

460 Miles
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Weather Forecasting

What if we wanted to predict for multiple cities?

32 Miles

Santa CruzSan Jose

? ?



Diagram for Weather Forecasting
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Diagram for Weather Forecasting
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Diagram for Weather Forecasting
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RSCSS
C

RSJ SS
J

Local Predictive Model

Date SSC RSC

1950-06-06 22.2°C 0

1951-06-06 17.1°C 1

... ... ...

2017-06-06 23.4°C 0

Date SSJ RSJ

1950-06-06 25.0°C 0

1951-06-06 20.1°C 1

... ... ...

2017-06-06 24.5°C 0

Pr(RSC|SSC) Pr(RSJ|SSJ)

Using historical data, we learn independent models for each city.



Incorrect Sensor Reading

Common problem: we get a faulty sensor reading.

Santa Cruz

SS
C

-22°C
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Incorrect Local Predictions
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RSCSS
C
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J

Incorrect Local Predictions

-22°C

Pr(RSC|SSC)

Pr(RSC) We use faulty 
reading to predict 
with our learned 
local model.



RSCSS
C

RSJ SS
J

Incorrect Local Predictions

-22°C

Pr(RSC|SSC)

Pr(RSC) Common outcome: 
local model makes 
incorrect prediction.



Relational Signals for Prediction

Recall: sensors in nearby cities provide useful relational information!

32 Miles

Santa CruzSan Jose
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Leveraging Relational Signals
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Leveraging Relational Signals
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32 Miles

Distance variable captures closeness between cities.



RSCSS
C

RSJ SS
J

Leveraging Relational Signals

-22°C  24°C

Distance variable captures closeness between cities.

Pr(RSC,RSJ|SSC,SSJ,DSC-SJ
)

DSC-S
J

32 Miles



RSC
RSJ
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Leveraging Relational Signals

-22°C  24°C

Joint modeling: forecasts in nearby cities should be similar.

Pr(RSC,RSJ|SSC,SSJ,DSC-SJ
)

Pr(RSC,RSJ)

DSC-S
J

32 Miles



RSCSS
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RSJ SS
J

Leveraging Relational Signals

-22°C  24°C

Joint modeling: forecasts in nearby cities should be similar.

Pr(RSC,RSJ|SSC,SSJ,DSC-SJ
)

Marginal Probability
Pr(RSC)

DSC-S
J

32 Miles



Combining Multiple Relational Signals

Nearby cities should have a greater relational influence than far away cities.

32 Miles

Santa Cruz

San Diego

San Jose

460 Miles



RSCSS
C

RSJ SS
J

Relative Influences of Neighbors
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J

Relative Influences of Neighbors

-22°C  24°C
DSC-S

J

32 Miles

Strength of collective influence depends on distance between cities.
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RSCSS
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RSJ SS
J

Relative Influences of Neighbors

-22°C  24°C
DSC-S

J

32 Miles

Distance variables DSC-SJ and DSC-SD mediate affinity of forecasts between cities.

RSDSS
D

 25°C

DSC-S
D

460 Miles

Pr(RSC,RSJ,RSD|SSC,SSJ,SSD,DSC-SJ,DSC-SD
)



RSCSS
C

RSJ SS
J

Markov Random Fields (MRFs)

-22°C  24°C
DSC-S

J

32 Miles

This graphical model is a Markov Random Field (MRF).

RSDSS
D

 25°C

DSC-S
D

460 Miles

Pr(RSC,RSJ,RSD|SSC,SSJ,SSD,DSC-SJ,DSC-SD
)



PSL -
Syntax and Semantics



PSL

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)
1.0: SenseRain(City)                       -> Rainy(City)

PSL uses first order logic-like rules.



PSL

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)
1.0: SenseRain(City)                       -> Rainy(City)

Weight VariablePredicate

PSL uses first order logic-like rules.



PSL - Templating Language for MRFs

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)

1.0: SenseRain(City) -> Rainy(City)



PSL - Templating Language for MRFs

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)

1.0: SenseRain(City) -> Rainy(City)

Rule templates instantiated with data become "Ground Rules".

5.0: Rainy('Cruz') & Distance('Cruz', 'Jose') -> Rainy('Jose')
5.0: Rainy('Cruz') & Distance('Cruz', 'Diego') -> Rainy('Diego')

1.0: SenseRain('Cruz') -> Rainy('Cruz')
1.0: SenseRain('Jose') -> Rainy('Jose')
1.0: SenseRain('Diego') -> Rainy('Diego')



PSL - Templating Language for MRFs

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)

RSC RSJ
DSC-S

J

RSD
DSC-S

D

RSC SS
C

RSJ SS
J

RSDSS
D

1.0: SenseRain(City)                       -> Rainy(City)

Ground rules directly map to potential functions in the MRF.



PSL - Templating Language for MRFs

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)
1.0: SenseRain(City)                       -> Rainy(City)

RSCSS
C

RSJ SS
J

DSC-S
J

RSDSS
D

DSC-S
D

5.0: Rainy('Cruz') & Distance('Cruz', 'Jose') -> Rainy('Jose')
5.0: Rainy('Cruz') & Distance('Cruz', 'Diego') -> Rainy('Diego')
1.0: SenseRain('Cruz') -> Rainy('Cruz')
1.0: SenseRain('Jose') -> Rainy('Jose')
1.0: SenseRain('Diego') -> Rainy('Diego')



PSL - MRF Inference

Sum over all 
ground rules.

The weight for 
a rule.

The "satisfaction" 
of a ground rule.
1/0 for discrete 
logic.



PSL - MRF Inference



PSL - MRF Inference

Discrete MRF Inference == Weighted MAX-SAT == NP-Hard



PSL - Continuous Relaxation

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)

Relax "hard" satisfiability of each rule.



PSL - Continuous Relaxation

5.0: Rainy(City1) & Distance(City1, City2) -> Rainy(City2)

First convert the rule to Disjunctive Normal Form.

Rainy(City1) ^ Distance(City1, City2) -> Rainy(City2)

¬(Rainy(City1) ^ Distance(City1, City2)) v Rainy(City2)

¬Rainy(City1) v ¬Distance(City1, City2) v Rainy(City2)



PSL - Continuous Relaxation

● P ^ Q = max(0.0, P + Q - 1.0)
● P v Q = min(1.0, P + Q)
● ¬Q = 1.0 - Q

Use Łukasiewicz logic to relax hard logical operators.



¬Rainy(City1) v ¬Distance(City1, City2) v Rainy(City2)

min(1.0, ¬Rainy(City1) + ¬Distance(City1, City2)) v Rainy(City2)

min(1.0, ¬Rainy(City1) + ¬Distance(City1, City2) + Rainy(City2)

min(1.0, (1.0 - Rainy(City1)) + (1.0 - Distance(City1, City2))
+ Rainy(City2))

min(1.0, 2.0 - (Rainy(City1) + Distance(City1, City2))
+ Rainy(City2))

PSL - Continuous Relaxation

Apply Łukasiewicz logic.



Satisfaction:
min(1.0, 2.0 - (Rainy(City1) + Distance(City1, City2)) + Rainy(City2))

PSL - Continuous Relaxation

Apply Łukasiewicz logic to form a Hinge-Loss MRF.

Distance to satisfaction:
1.0 - min(1.0, 2.0 - (Rainy(City1) + Distance(City1, City2)) + Rainy(City2))



PSL - HL-MRF Inference

HL-MRF Inference == Sum of Convex Function == Convex!
Solve with Alternating Direction Method of Multipliers (ADMM)

https://web.stanford.edu/~boyd/admm.html

https://web.stanford.edu/~boyd/admm.html


PSL - Rules to Assignments

Data
Rules

Ground Rules Potential 
Functions

Random 
Variable 

Assignments

Grounding

Łukasiewicz 
Relaxation Inference


