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Probabilistic Soft Logic (PSL) Overview

o Declarative probabilistic programming language

for structured prediction
o Scalable -- inference in PSL is highly efficient
o Interpretable -- models are specified as weighted rules
o EXpressive -- can model complex dependencies, latent
variables, handle missing data
e Open-source: psl.lings.org



https://psl.linqs.org/

PSL Key Capabilities

o Rich representation language based on logic

allows

o Declarative representation of models
o Well-suited to domains with structure (e.g., graphs and
networks)
o Probabilistic Interpretation
o Supports uncertainty and “soft” logic
o Semantics defined via specific from of graphical model
referred to as a Hinge-loss Markov Random Field



PSL Application Types

e Effective on wide range of problem types
o data integration, information fusion, & entity resolution
o recommender systems & user modeling
o computational social science

o knowledge graph construction



PSL Sample Application Domailns

Competitive Diffusion in Social Networks
o Broecheler et al., SocialCom10

Social Group Modeling . . .
o Huang et al, Social Networks and Social Media Analysis Workshop NIPS12
Demographic Prediction & Knowledge Fusion for User Modeling
O Fgrnadi etal, MLJ17 . _ . .
Inferring Organization Attitudes in Social Media
o  Kumar et al., ASONAM16

Modeling Student Engagement in MOOCs
o Ramesh et al., AAAI13; Ramesh et al., L@S14; Tomkins et al. EDM16

Personalization and Explanation in Hybrid Recommender Systems
o  Kouki et al., RecSys15; Kouki et al., RecSys17

Detectin% Cyberbull}\/ling in Social Media
o  Tomkins et al.,, ASONAM



e Basic Introduction to PSL
e Getting Started with PSL
e PSL Examples

o Collective Classification

o Link Prediction

o Entity Resolution

o Knowledge Graph Construction

e Conclusion



Why Collective
Classification?




Weather Forecasting

Goal: Predict the probability of rain in Santa Cruz.




Local Signals for Prediction

Local sensors provide useful signals for prediction.
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Relational Sighals for Prediction

Sensors in nearby cities provide useful relational information.
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Relational Sighals for Prediction

Sensors in nearby cities provide useful relational information.
San Jose

Santa Cruz‘




Weather Forecasting

What if we wanted to predict for multiple cities?

San Jose _ Santa Cruz




Diagram for Weather Forecasting

sensor sensor




Diagram for Weather Forecasting

sensor $ sensor

Observed Value Prediction




Diagram for Weather Forecasting

sensor sensor




Local Predictive Model

Using historical data, we learn independent models for each city.
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1950-06-06 | 22.2°C | 0O 1950-06-06 | 25.0°C | O
1951-06-06 | 17.1°C |1 1951-06-06 | 20.1°C |1
2017-06-06 | 23.4°C | 0 2017-06-06 | 24.5°C | 0
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Incorrect Sensor Reading

Common problem: we get a faulty sensor reading.

Santa Cru\rz




Incorrect Local Predictions
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Incorrect Local Predictions

-22°C ; SS SS
C J

Pr(Ry.) We use faulty

reading to predict
Pr(R..|S..) with our learned
local model.




Incorrect Local Predictions

Common outcome:
local model makes
Incorrect prediction.



Relational Sighals for Prediction

Recall: sensors in nearby cities provide useful relational information!
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Leveraging Relational Signals
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Leveraging Relational Signals

Distance variable captures closeness between cities.
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Leveraging Relational Signals

Distance variable captures closeness between cities.
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Leveraging Relational Signals

Joint modeling: forecasts in nearby cities should be similar.
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Leveraging Relational Signals

Joint modeling: forecasts in nearby cities should be similar.
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Combining Multiple Relational Signals

Nearby cities should have a greater relational influence than far away cities.

San Jose




Relative Influences of Neighbors
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Relative Influences of Neighbors

Strength of collective influence depends on distance between cities.
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Relative Influences of Neighbors

Distance variables D.. ., and D.._., mediate affinity of forecasts between cities.
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Markov Random Fields (MRFs)

This graphical model is a Markov Random Field (MRF).
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PSL -
Syntax and Semantics




PSL

PSL uses first order logic-like rules.

Rainy( ) & Distance( ) -> Rainy(

SenseRain( ) -> Rainy(



PSL

PSL uses first order logic-like rules.

Rainy( ) & Distance( ) -> Rainy(
SIEERER -> Rainy(

Weight Predicate Variable



PSL - Templating Language for MRFs

Rainy( ) & Distance( ) -> Rainy(

SenseRain( ) -> Rainy(




PSL - Templating Language for MRFs

Rule templates instantiated with data become "Ground Rules".

) & Distance( ) -> Rainy(
5.0: Rainy('Cruz') & Distance('Cruz', 'Jose') -> Rainy('Jose')
5.0: Rainy('Cruz') & Distance('Cruz', 'Diego') -> Rainy('Diego')

SenseRain( ) -> Rainy(

: SenseRain('Cruz') -> Rainy('Cruz')
: SenseRain('Jose') -> Rainy('Jose')
: SenseRain('Diego') -> Rainy('Diego')
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'oNoNo)



PSL - Templating Language for MRFs

Ground rules directly map to potential functions in the MRF.

Rainy( ) & Distance( ) -> Rainy(




PSL - Templating Language for MRFs

Rainy( ) & Distance( ) -> Rainy(
SenseRain( ) -> Rainy(

SC-S
S | S
S Rsy J RSJ S
¢ J
D — 5.0: Rainy('Cruz') & Distance('Cruz', 'Jose') -> Rainy('Jose')
SC-5 5.0: Rainy('Cruz') & Distance('Cruz', 'Diego') -> Rainy('Diego')
D 1.0: SenseRain('Cruz') -> Rainy('Cruz')
S R 1.0: SenseRain('Jose') -> Rainy('Jose')
S SD 1.0: SenseRain('Diego') -> Rainy('Diego')



G
P(Y|X) ea:p(z wW; O; )

Sum over all The weight for The "satisfaction"

ground rules. a rule. of a ground rule.

1/0 for discrete
logic.



PSL - MRF Inference
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PSL - MRF Inference

Discrete MRF Inference == Weighted MAX-SAT == NP-Hard

G
argmax E W; D
i



PSL - Continuous Relaxation

Relax "hard" satisfiability of each rule.

Rainy( ) & Distance( ) -> Rainy(




PSL - Continuous Relaxation

First convert the rule to Disjunctive Normal Form.

Rainy( ) & Distance( ) -> Rainy(

Rainy(Cityl) " Distance(Cityl, City2) -> Rainy(City2)
-(Rainy(City1l) " Distance(Cityl, City2)) v Rainy(City2)

-Rainy(Cityl) v -Distance(Cityl, City2) v Rainy(City2)



PSL - Continuous Relaxation

Use tukasiewicz logic to relax hard logical operators.

e P" Q=max(0.0, P+ Q - 1.0)
e Pv Q=min(1.0, P + Q)
e -Q =1.0 -Q



PSL - Continuous Relaxation

Apply tukasiewicz logic.

-Rainy(Cityl) v -Distance(Cityl, City2) v Rainy(City2)
min(1.0, -Rainy(Cityl) + -Distance(Cityl, City2)) v Rainy(City2)
min(1.0, -Rainy(Cityl) + -Distance(Cityl, City2) + Rainy(City2)

min(1.0, (1.0 - Rainy(City1l)) + (1.0 - Distance(Cityl, City2))
+ Rainy(City2))

min(1.0, 2.0 - (Rainy(Cityl) + Distance(Cityl, City2))
+ Rainy(City2))



PSL - Continuous Relaxation

Apply tukasiewicz logic to form a Hinge-Loss MRF.

Satisfaction:
min(1.0, 2.0 - (Rainy(Cityl) + Distance(Cityl, City2)) + Rainy(City2))

Distance to satisfaction:

1.0 - min(1.0, 2.0 - (Rainy(Cityl) + Distance(Cityl, City2)) + Rainy(City2))

~




PSL - HL-MRF Inference

HL-MRF Inference == Sum of Convex Function == Convex!
Solve with Alternating Direction Method of Multipliers (ADMM)

G
argmax - E Wi P
i

https://web.stanford.edu/~boyd/admm.html



https://web.stanford.edu/~boyd/admm.html

PSL - Rules to Assignments

Rules [Bj -
4

Grounding
) Random
Ground Rules > Poter!tlal > Variable
Functions .
Assignments
tukasiewicz

. Inference
Relaxation



