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Bayesian Data Analysis with PPLs:
Bayesian Regression in Pyro



In this tutorial:

1. Why probabilistic machine learning?
2. Building a probabilistic regression model in Pyro
3. Approximate inference in Bayesian regression with SVI and MCMC
4. Pros and cons of SVI vs MCMC: subsampling, bias

Based on the following Pyro tutorials:

• Bayesian regression 1: here
• Bayesian regression 2: http://pyro.ai/examples/bayesian_regression.html 

https://github.com/uber/pyro/blob/45a564e9a848b58e31e9aa8311df86bf4b1431f8/tutorial/source/reg_example-gdp_terrain_ruggedness.ipynb
http://pyro.ai/examples/bayesian_regression.html


Machine learning problems in theory



Machine learning problems in practice



Machine learning solutions in practice

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html


Machine learning solutions in practice



Probabilistic Modeling and Inference

Unified account of generalization, regularization, unsupervised learning, 
calibrated uncertainty estimates, multitask/transfer learning, model composition, 

...

(h/t Zoubin)



Predicting GDP from terrain

Q: Did rugged terrain shield some African countries from the 
negative long-term economic effects of the slave trade?

We will attempt to estimate GDP in 2000 for African and 
non-African countries from a measure of terrain ruggedness

These predictions will necessarily have uncertainty, so we 
will use Bayesian linear regression

McElreath, D., Statistical Rethinking, Chapter 7, 2016
Nunn, N. & Puga, D., Ruggedness: The blessing of bad geography in Africa

https://diegopuga.org/papers/rugged.pdf


Probabilistic regression: model

We model expected log(GDP) as a linear function of terrain ruggedness 
and whether the country is in Africa or not:

def model(is_cont_africa, ruggedness):

    ...

    mu = a + b_a * is_cont_africa + b_r * ruggedness + \

        b_ar * is_cont_africa * ruggedness

    ...



Probabilistic regression: model

We model the data as drawn from a Normal around the predicted mean:

def model(is_cont_africa, ruggedness):

    ...

    mu = a + b_a * is_cont_africa + b_r * ruggedness + \

        b_ar * is_cont_africa * ruggedness

    return pyro.sample("obs", Normal(mu, sigma))



Probabilistic regression: model

We put simple, independent priors on all regression coefficients:

def model(is_cont_africa, ruggedness):

    a = pyro.sample("a", Normal(8., 1000.))

    b_a = pyro.sample("bA", Normal(0., 1.))

    b_r = pyro.sample("bR", Normal(0., 1.))

    b_ar = pyro.sample("bAR", Normal(0., 1.))

    sigma = pyro.sample("sigma", Uniform(0., 10.))

    mu = a + b_a * is_cont_africa + b_r * ruggedness + \

        b_ar * is_cont_africa * ruggedness

    ...



Probabilistic regression: “mean-field” guide

An especially simple guide: an independent Normal for each latent variable:

def guide(is_cont_africa, ruggedness, data):

    ...

    loc_a = pyro.param("loc_a", ...)

    scale_a = pyro.param("scale_a", ...)

    a = pyro.sample("a", Normal(loc_a, scale_a))

    ...

    sigma_dist = Normal(...)

    sigma = pyro.sample("sigma", sigma_dist)



Inference as optimization: understanding the ELBO

We want a loss function that is always non-negative and is zero when our 
guide q(z) is equal to the true posterior p(z | x):

One such loss function is the KL divergence:



Inference as optimization: understanding the ELBO

Evaluating the KL divergence requires knowing the true posterior p(z | x). 
Instead we use an approximation that only requires evaluating p(x, z):

Because the constant C does not depend on the guide, maximizing the 
ELBO minimizes the KL between guide q(z) and true posterior p(z | x)



Inference as optimization: training the guide with SVI

svi = SVI(conditioned_model, 

          guide, 

          Adam({"lr": .005}), 

          loss=Trace_ELBO())

...

for i in range(10000):

    svi.step(is_cont_africa, ruggedness, log_gdp)



MCMC in Pyro: Hamiltonian Monte Carlo (HMC)

Pyro provides a No U-Turn Sampler MCMC kernel (as in Stan, PyMC3) 
for scalable, asymptotically unbiased inference:

nuts_kernel = pyro.infer.NUTS(conditioned_model, adapt_step_size=True)

We apply the kernel and save the results with pyro.infer.MCMC

hmc_posterior = pyro.infer.MCMC(nuts_kernel,

                                num_samples=1000,

                                warmup_steps=200)

hmc_posterior = hmc_posterior.run(is_cont_africa, ruggedness, log_gdp)



Bayesian regression: results with HMC



Bayesian regression: results with HMC



SVI vs MCMC: subsampling

In SVI, we can subsample latent and observed variables with pyro.iarange 
which randomly samples a set of indices and rescales probabilities:

def subsample_model(is_cont_africa, ruggedness, data):

    a = pyro.sample("a", dist.Normal(8., 1000.))

    ...

    with pyro.iarange("data", len(ruggedness), subsample_size=1) as ix:

        pyro.sample("obs", dist.Normal(mu, sigma), obs=data[ix])

With subsampling, we can apply SVI to much larger models and data



SVI vs MCMC: biased approximation

Our parameterized family of guides may not include the true posterior:

Variational Bayes and Beyond: Bayesian Inference for Big Data, Broderick, T.

http://www.tamarabroderick.com/tutorial_2018_icml.html


SVI vs MCMC: biased approximation and underdispersion

Variational inference with simple guides underestimates posterior uncertainty...

Posterior cross-section, bA vs bR



SVI vs MCMC: mitigating underdispersion

...but more expressive guides may do a better job of reducing this bias:

Posterior cross-section, bA vs bR Posterior cross-section, bA vs bR



Recap

1. A case for probabilistic machine learning
2. Built a probabilistic regression model in Pyro
3. Approximate inference in Bayesian regression with SVI and MCMC
4. Pros and cons of SVI vs MCMC: subsampling, bias

Coming up: using Pyro to build and learn powerful black-box generative 
models based on deep neural networks
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Would you like to know more?

Pyro tutorials web page: http://pyro.ai/examples/index.html 
Another walkthrough of Bayesian regression with SVI using advanced Pyro features:

http://pyro.ai/examples/bayesian_regression.html 

A more complicated regression example demonstrating both SVI and MCMC:

https://github.com/uber/pyro/tree/dev/examples/eight_schools

Pyro MCMC, HMC, and NUTS documentation:

http://docs.pyro.ai/en/0.2.1-release/mcmc.html 

http://pyro.ai/examples/index.html
http://pyro.ai/examples/bayesian_regression.html
https://github.com/uber/pyro/tree/dev/examples/eight_schools
http://docs.pyro.ai/en/0.2.1-release/mcmc.html


Constraining parameters and guides in SVI

In SVI, we must ensure that all ELBO terms are finite:



Constraining parameter values in SVI

Parameters of distributions must be in the right range, assisted by 
torch.distributions.constraints

def guide(is_cont_africa, ruggedness, data):

    ...

    loc_a = pyro.param("loc_a")

    scale_a = pyro.param("scale_a", constraint=constraints.positive)

    a = pyro.sample("a", Normal(loc_a, scale_a))

    ...



Matching random variable supports in SVI

Distribution pairs in models and guides must have the same support, assisted by 
torch.distributions.biject_to and TransformedDistribution

def guide(is_cont_africa, ruggedness, data):

    ...

    sigma_transform = torch.distributions.biject_to(constraints.positive)

    sigma_dist = TransformedDistribution(Normal(...), sigma_transform)

    sigma = pyro.sample("sigma", sigma_dist)


