
Pyro

Bayesian Data Analysis with PPLs:
Bayesian Regression in Pyro

In this tutorial:

1. Why probabilistic machine learning?
2. Building a probabilistic regression model in Pyro
3. Approximate inference in Bayesian regression with SVI and MCMC
4. Pros and cons of SVI vs MCMC: subsampling, bias

Based on the following Pyro tutorials:

• Bayesian regression 1: here
• Bayesian regression 2: http://pyro.ai/examples/bayesian_regression.html

https://github.com/uber/pyro/blob/45a564e9a848b58e31e9aa8311df86bf4b1431f8/tutorial/source/reg_example-gdp_terrain_ruggedness.ipynb
http://pyro.ai/examples/bayesian_regression.html

Machine learning problems in theory

Machine learning problems in practice

Machine learning solutions in practice

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Machine learning solutions in practice

Probabilistic Modeling and Inference

Unified account of generalization, regularization, unsupervised learning,
calibrated uncertainty estimates, multitask/transfer learning, model composition,

...

(h/t Zoubin)

Predicting GDP from terrain

Q: Did rugged terrain shield some African countries from the
negative long-term economic effects of the slave trade?

We will attempt to estimate GDP in 2000 for African and
non-African countries from a measure of terrain ruggedness

These predictions will necessarily have uncertainty, so we
will use Bayesian linear regression

McElreath, D., Statistical Rethinking, Chapter 7, 2016
Nunn, N. & Puga, D., Ruggedness: The blessing of bad geography in Africa

https://diegopuga.org/papers/rugged.pdf

Probabilistic regression: model

We model expected log(GDP) as a linear function of terrain ruggedness
and whether the country is in Africa or not:

def model(is_cont_africa, ruggedness):

 ...

 mu = a + b_a * is_cont_africa + b_r * ruggedness + \

 b_ar * is_cont_africa * ruggedness

 ...

Probabilistic regression: model

We model the data as drawn from a Normal around the predicted mean:

def model(is_cont_africa, ruggedness):

 ...

 mu = a + b_a * is_cont_africa + b_r * ruggedness + \

 b_ar * is_cont_africa * ruggedness

 return pyro.sample("obs", Normal(mu, sigma))

Probabilistic regression: model

We put simple, independent priors on all regression coefficients:

def model(is_cont_africa, ruggedness):

 a = pyro.sample("a", Normal(8., 1000.))

 b_a = pyro.sample("bA", Normal(0., 1.))

 b_r = pyro.sample("bR", Normal(0., 1.))

 b_ar = pyro.sample("bAR", Normal(0., 1.))

 sigma = pyro.sample("sigma", Uniform(0., 10.))

 mu = a + b_a * is_cont_africa + b_r * ruggedness + \

 b_ar * is_cont_africa * ruggedness

 ...

Probabilistic regression: “mean-field” guide

An especially simple guide: an independent Normal for each latent variable:

def guide(is_cont_africa, ruggedness, data):

 ...

 loc_a = pyro.param("loc_a", ...)

 scale_a = pyro.param("scale_a", ...)

 a = pyro.sample("a", Normal(loc_a, scale_a))

 ...

 sigma_dist = Normal(...)

 sigma = pyro.sample("sigma", sigma_dist)

Inference as optimization: understanding the ELBO

We want a loss function that is always non-negative and is zero when our
guide q(z) is equal to the true posterior p(z | x):

One such loss function is the KL divergence:

Inference as optimization: understanding the ELBO

Evaluating the KL divergence requires knowing the true posterior p(z | x).
Instead we use an approximation that only requires evaluating p(x, z):

Because the constant C does not depend on the guide, maximizing the
ELBO minimizes the KL between guide q(z) and true posterior p(z | x)

Inference as optimization: training the guide with SVI

svi = SVI(conditioned_model,

 guide,

 Adam({"lr": .005}),

 loss=Trace_ELBO())

...

for i in range(10000):

 svi.step(is_cont_africa, ruggedness, log_gdp)

MCMC in Pyro: Hamiltonian Monte Carlo (HMC)

Pyro provides a No U-Turn Sampler MCMC kernel (as in Stan, PyMC3)
for scalable, asymptotically unbiased inference:

nuts_kernel = pyro.infer.NUTS(conditioned_model, adapt_step_size=True)

We apply the kernel and save the results with pyro.infer.MCMC

hmc_posterior = pyro.infer.MCMC(nuts_kernel,

 num_samples=1000,

 warmup_steps=200)

hmc_posterior = hmc_posterior.run(is_cont_africa, ruggedness, log_gdp)

Bayesian regression: results with HMC

Bayesian regression: results with HMC

SVI vs MCMC: subsampling

In SVI, we can subsample latent and observed variables with pyro.iarange
which randomly samples a set of indices and rescales probabilities:

def subsample_model(is_cont_africa, ruggedness, data):

 a = pyro.sample("a", dist.Normal(8., 1000.))

 ...

 with pyro.iarange("data", len(ruggedness), subsample_size=1) as ix:

 pyro.sample("obs", dist.Normal(mu, sigma), obs=data[ix])

With subsampling, we can apply SVI to much larger models and data

SVI vs MCMC: biased approximation

Our parameterized family of guides may not include the true posterior:

Variational Bayes and Beyond: Bayesian Inference for Big Data, Broderick, T.

http://www.tamarabroderick.com/tutorial_2018_icml.html

SVI vs MCMC: biased approximation and underdispersion

Variational inference with simple guides underestimates posterior uncertainty...

Posterior cross-section, bA vs bR

SVI vs MCMC: mitigating underdispersion

...but more expressive guides may do a better job of reducing this bias:

Posterior cross-section, bA vs bR Posterior cross-section, bA vs bR

Recap

1. A case for probabilistic machine learning
2. Built a probabilistic regression model in Pyro
3. Approximate inference in Bayesian regression with SVI and MCMC
4. Pros and cons of SVI vs MCMC: subsampling, bias

Coming up: using Pyro to build and learn powerful black-box generative
models based on deep neural networks

Special thanks to

Paul Horsfall
Dustin Tran
Soumith Chintala
Adam Paszke
Du Phan

pyro.ai

Eli Bingham JP Chen Martin Jankowiak

Theo Karaletsos Fritz Obermeyer Neeraj Pradhan

Rohit Singh Paul Szerlip Noah Goodman

http://pyro.ai/

Would you like to know more?

Pyro tutorials web page: http://pyro.ai/examples/index.html
Another walkthrough of Bayesian regression with SVI using advanced Pyro features:

http://pyro.ai/examples/bayesian_regression.html

A more complicated regression example demonstrating both SVI and MCMC:

https://github.com/uber/pyro/tree/dev/examples/eight_schools

Pyro MCMC, HMC, and NUTS documentation:

http://docs.pyro.ai/en/0.2.1-release/mcmc.html

http://pyro.ai/examples/index.html
http://pyro.ai/examples/bayesian_regression.html
https://github.com/uber/pyro/tree/dev/examples/eight_schools
http://docs.pyro.ai/en/0.2.1-release/mcmc.html

Constraining parameters and guides in SVI

In SVI, we must ensure that all ELBO terms are finite:

Constraining parameter values in SVI

Parameters of distributions must be in the right range, assisted by
torch.distributions.constraints

def guide(is_cont_africa, ruggedness, data):

 ...

 loc_a = pyro.param("loc_a")

 scale_a = pyro.param("scale_a", constraint=constraints.positive)

 a = pyro.sample("a", Normal(loc_a, scale_a))

 ...

Matching random variable supports in SVI

Distribution pairs in models and guides must have the same support, assisted by
torch.distributions.biject_to and TransformedDistribution

def guide(is_cont_africa, ruggedness, data):

 ...

 sigma_transform = torch.distributions.biject_to(constraints.positive)

 sigma_dist = TransformedDistribution(Normal(...), sigma_transform)

 sigma = pyro.sample("sigma", sigma_dist)

