
Pyro

Introduction to Probabilistic Programming:
Models and Inference in Pyro

1. Why probabilistic modelling for AI and machine learning?
2. Why probabilistic programming? Why Pyro?
3. Building up models as probabilistic programs
4. Inference: fitting Pyro programs to observed data

Based on the following Pyro tutorials:

• Models in Pyro: http://pyro.ai/examples/intro_part_i.html
• Inference in Pyro: http://pyro.ai/examples/intro_part_ii.html

http://pyro.ai/examples/intro_part_i.html
http://pyro.ai/examples/intro_part_ii.html

Human-level concept learning through
probabilistic program induction, Lake et al.

Neural Scene Representation and Rendering, Eslami et al.

Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning, Wu et al.

Automatic Construction and Natural-Language Description of
Nonparametric Regression Models, Lloyd et al.

(h/t Zoubin)

Scalability: inference in high-dimensional models and large datasets
requires high-performance algorithms and systems

Flexibility: advanced models require model-specific runtime behavior
or inference algorithms that are difficult to implement in PPLs

Expressivity: writing rich models quickly and concisely requires
languages with advanced control flow, modularity, and tooling

Scalability: inference in high-dimensional models and large datasets
requires high-performance algorithms and systems

Flexibility: advanced models require model-specific runtime behavior
or inference algorithms that are difficult to implement in PPLs

Pyro is expressive:

● Models are functions with arbitrary Python code, including all control flow
● Pyro primitives for: sampling, observation, and learnable parameters

Pyro is scalable:

● Variational method takes a model and an inference model (or guide) and optimizes
Evidence Lower Bound, with advanced features like subsampling and variance reduction

● High-performance automatic differentiation and tensor math with PyTorch

Pyro is flexible:

● Guides are arbitrary programs, allowing injection of knowledge or easy troubleshooting
● Inference algorithms built with Poutine, an extensible, hackable, composable library of

declarative building blocks for modifying the behavior of probabilistic programs

Probabilistic programs are regular programs that call stochastic functions:

def weather(p_cloudy):

 is_cloudy = torch.distributions.Bernoulli(p_cloudy).sample()

 if is_cloudy:

 loc, scale = 55.0, 10.0

 else:

 loc, scale = 75.0, 15.0

 temperature = torch.distributions.Normal(loc, scale).sample()

 return is_cloudy, temperature

Pyro code is just Python with stochastic calls wrapped in pyro.sample:

def weather(p_cloudy):

 is_cloudy = pyro.sample("is_cloudy", pyro.distributions.Bernoulli(p_cloudy))

 if is_cloudy:

 loc, scale = 55.0, 10.0

 else:

 loc, scale = 75.0, 15.0

 temperature = pyro.sample("temp", pyro.distributions.Normal(loc, scale))

 return is_cloudy, temperature

Pyro programs can be composed freely, if sample site names are unique:

def ice_cream_sales():

 is_cloudy, temperature = weather(0.3)

 if not is_cloudy and temperature > 80.0:

 expected_sales = 200.

 else:

 expected_sales = 50.

 return pyro.sample('sales', Normal(expected_sales, 10.0))

def scale(guess):

 weight = pyro.sample("weight", Normal(guess, 1.0))

 return pyro.sample("measurement", Normal(weight, 0.75))

def scale(guess):

 weight = pyro.sample("weight", Normal(guess, 1.0))

 return pyro.sample("measurement", Normal(weight, 0.75))

Conditioning fixes the value of sample statements:

def conditioned_scale(guess):

 weight = pyro.sample("weight", Normal(guess, 1.0))

 return pyro.sample("measurement", Normal(weight, 0.75), obs=9.5)

Equivalent to:

conditioned_scale = pyro.condition(scale, data={"measurement": 9.5})

Inference algorithms compute the distribution of unconstrained sites:

conditioned_scale = pyro.condition(scale, data={"measurement": 9.5})

posterior = pyro.infer.Importance(conditioned_scale, num_samples=1000)

marginal = pyro.infer.EmpiricalMarginal(posterior.run(8.5), sites="weight")

We can do inference by building a model of the posterior:

def conditioned_scale(guess):

 weight = pyro.sample("weight", Normal(guess, 1.0))

 return pyro.sample("measurement", Normal(weight, 0.75), obs=9.5)

def guide(guess):

 return pyro.sample("weight", ...)

The scale model is so simple that the true posterior can be computed by hand:

def deferred_conditioned_scale(measurement, guess):

 return pyro.condition(scale, data={"measurement": measurement})(guess)

def true_posterior_guide(measurement, guess):

 a = (guess + torch.sum(measurement)) / (measurement.size(0) + 1.0)

 b = 1. / (measurement.size(0) + 1.0)

 return pyro.sample("weight", Normal(a, b))

Guides estimate the posterior directly:

def true_posterior_guide(measurement, guess):

 a = (guess + torch.sum(measurement)) / (measurement.size(0) + 1.0)

 b = 1. / (measurement.size(0) + 1.0)

 return pyro.sample("weight", Normal(a, b))

In most interesting models, the true posterior cannot be computed by hand

def scale(guess):

 weight = pyro.sample("weight", Normal(guess, 1.0))

 return pyro.sample("measurement", Normal(weight, 0.75))

Spot the difference!

def intractable_scale(guess):

 weight = pyro.sample("weight", Normal(guess, 1.0))

 return pyro.sample("measurement", Normal(fn(weight), 0.75))

Instead of one guide, we could guess an entire parametrized family:

Variational Bayes and Beyond: Bayesian Inference for Big Data, Broderick, T.

http://www.tamarabroderick.com/tutorial_2018_icml.html

Instead of one guide, we could guess an entire parametrized family:

def parametrized_guide(guess):

 a = pyro.param("a", torch.tensor(torch.randn(1) + guess.detach()))

 b = pyro.param("b", torch.randn(1), constraint=constraints.positive)

 return pyro.sample("weight", Normal(a, b))

We search for the best guide by optimizing parameters with a loss function:

Variational Bayes and Beyond: Bayesian Inference for Big Data, Broderick, T.

http://www.tamarabroderick.com/tutorial_2018_icml.html

We search for the best guide by optimizing parameters with a loss function
using a light wrapper over PyTorch’s stochastic gradient descent optimizer:

svi = pyro.infer.SVI(model=conditioned_scale,

 guide=parametrized_guide,

 optim=pyro.optim.SGD({"lr": 0.001}),

 loss=pyro.infer.Trace_ELBO(...))

for t in range(1000):

 svi.step(guess)

Revisiting our design principles:

Express rich models: not constrained by needing to know lots of integrals

Scalable to large models and large datasets: gradient-based optimizers work
in high dimensions, stochastic optimizers use minibatches of data and latents

Flexible guide programs offer large a surface area for incorporating
knowledge and troubleshooting software or statistical failures

1. A whirlwind tour of some recent breakthroughs in AI research
2. The case for probabilistic programming, and for Pyro
3. Building up models as probabilistic programs
4. Inference: fitting Pyro programs to observed data
5. Inference as optimization in Pyro

Coming up: an introduction to Bayesian machine learning in Pyro

pyro.ai

Eli Bingham JP Chen Martin Jankowiak

Theo Karaletsos Fritz Obermeyer Neeraj Pradhan

Rohit Singh Paul Szerlip Noah Goodman

http://pyro.ai/

Pyro tutorials web page: http://pyro.ai/examples/index.html
Detailed walkthrough of Pyro implementation of VAE:

http://pyro.ai/examples/vae.html

Deep dive into the math and implementation of stochastic variational inference in Pyro:

http://pyro.ai/examples/svi_part_i.html

Detailed description of tensor and distribution shapes and broadcasting in Pyro:

http://pyro.ai/examples/tensor_shapes.html

http://pyro.ai/examples/index.html
http://pyro.ai/examples/vae.html
http://pyro.ai/examples/svi_part_i.html
http://pyro.ai/examples/tensor_shapes.html

Pyro is homoiconic: inference algorithms are Pyro programs, and internal data structures like
Traces are ordinary Pyro objects, enabling nested inference and metainference

Pyro code really is just Python code: same ecosystem and runtime performance, so making
Pyro programs faster or more efficient is no different from optimizing any other Python code

Programmability allows for automation: parts of Pyro left up to user specification, like names
or guides, can be targeted for automatic generation without affecting the rest of Pyro

