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Introduction to Probabilistic Programming:
Models and Inference in Pyro
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In this tutorial:

Why probabilistic modelling for Al and machine learning?
Why probabilistic programming? Why Pyro?

Building up models as probabilistic programs

Inference: fitting Pyro programs to observed data

R

Based on the following Pyro tutorials:

* Models in Pyro: http://pyro.ai/examples/intro_part_i.html
* Inference in Pyro: http://pyro.ai/examples/intro_part_ii.html
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http://pyro.ai/examples/intro_part_i.html
http://pyro.ai/examples/intro_part_ii.html

Probabilistic Modeling in Al: Frontiers
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Human-level concept learning through
probabilistic program induction, Lake et al.
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Probabilistic Modeling in Al: Frontiers
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Neural Scene Representation and Rendering, Eslami et al.
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Probabilistic Modeling in Al: Frontiers
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Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning, Wu et al.
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Probabilistic Modeling in Al: Frontiers
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This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained
from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82%
from 0.18 to 0.15.
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Automatic Construction and Natural-Language Description of
Nonparametric Regression Models, Lloyd et al.
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Probabilistic inference

FEverything follows from two simple rules:
Sum rule: P(z) =) P(z,y)
Product rule: P(x,y) = P(x)P(y|x)

D|0)P(0) P(D|#) likelihood of 6
P(D) P(0) prior probability of 6
P(0|D) posterior of § given D

Py = 2

UBER (h/t Zoubin)



Probabilistic programming languages

Probabilistic models: Representation of
uncertain knowledge and reasoning.

+

Programming languages: Uniform, universal
specification of process, with high-level
abstractions.

UBER

Recipe:

A nice high-level PL,

Distribution objects,

Sample statements,

Condition, to affect weight of execution traces,

Inference to compute posterior and marginal
distributions.



Why aren’t we building everything with PPLs?

Scalability: inference in high-dimensional models and large datasets
requires high-performance algorithms and systems

Flexibility: advanced models require model-specific runtime behavior
or inference algorithms that are difficult to implement in PPLs

UBER



Why aren’t we building everything with PPLs?

Expressivity: writing rich models quickly and concisely requires
languages with advanced control flow, modularity, and tooling

Scalability: inference in high-dimensional models and large datasets
requires high-performance algorithms and systems

Flexibility: advanced models require model-specific runtime behavior
or inference algorithms that are difficult to implement in PPLs
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Pyro: A Deep Universal PPL

Pyro is expressive:

e Models are functions with arbitrary Python code, including all control flow
e Pyro primitives for: sampling, observation, and learnable parameters

Pyro is scalable:

e Variational method takes a model and an inference model (or guide) and optimizes
Evidence Lower Bound, with advanced features like subsampling and variance reduction
e High-performance automatic differentiation and tensor math with PyTorch

Pyro is flexible:

e (Guides are arbitrary programs, allowing injection of knowledge or easy troubleshooting
e Inference algorithms built with Poutine, an extensible, hackable, composable library of
declarative building blocks for modifying the behavior of probabilistic programs
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Probabilistic programs

Probabilistic programs are regular programs that call stochastic functions:

def weather(p_cloudy):
is _cloudy = torch.distributions.Bernoulli(p_cloudy).sample()

if is cloudy:

loc, scale 55.0, 10.0

else:

loc, scale 75.0, 15.0

temperature = torch.distributions.Normal(loc, scale).sample()

return is_cloudy, temperature
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Writing probabilistic programs in Pyro

Pyro code is just Python with stochastic calls wrapped in pyro.sample:

def weather(p_cloudy):

is cloudy = pyro.sample("is cloudy", pyro.distributions.Bernoulli(p_cloudy))

if is cloudy:

loc, scale 55.0, 10.0
else:

loc, scale 75.0, 15.0

temperature = pyro.sample("temp", pyro.distributions.Normal(loc, scale))
return is_cloudy, temperature
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Composing probabilistic programs in Pyro

Pyro programs can be composed freely, if sample site names are unique:

def ice cream sales():
is cloudy, temperature = weather(0.3)

if not is cloudy and temperature > 80.0:
200.

expected sales

else:

expected sales 50.

return pyro.sample('sales', Normal(expected sales, 10.0))
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Even simpler example: noisy scale

def scale(guess):
weight = pyro.sample("weight", Normal(guess, 1.9))
return pyro.sample("measurement”, Normal(weight, ©.75))
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Inference: what measurements would we expect?

def scale(guess):
weight = pyro.sample("weight"”, Normal(guess, 1.9))
return pyro.sample("measurement”, Normal(weight, ©.75))

P(measurement | guess) ‘

UBER o0 |
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Inference: conditioning a model on data

Conditioning fixes the value of sample statements:

def conditioned scale(guess):
weight

pyro.sample("weight", Normal(guess, 1.0))
return pyro.sample("measurement", Normal(weight, ©.75), obs=9.5)

Equivalent to:

conditioned scale = pyro.condition(scale, data={"measurement": 9.5})

UBER



Inference: conditioning a model on data

Inference algorithms compute the distribution of unconstrained sites:
conditioned_scale = pyro.condition(scale, data={"measurement": 9.5})

posterior = pyro.infer.Importance(conditioned_scale, num_samples=1000)
marginal = pyro.infer.EmpiricalMarginal(posterior.run(8.5), sites="weight")

P(weight | measurement, guess)
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Inference: guide functions

We can do inference by building a model of the posterior:

def conditioned scale(guess):
weight = pyro.sample("weight", Normal(guess, 1.9))
return pyro.sample("measurement", Normal(weight, ©.75), obs=9.5)

def guide(guess):
return pyro.sample("weight", ...)
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Inference: guide functions

The scale model is so simple that the true posterior can be computed by hand:

def deferred_conditioned_scale(measurement, guess):

return pyro.condition(scale, data={"measurement": measurement})(guess)

def true_posterior_guide(measurement, guess):
a

(guess + torch.sum(measurement)) / (measurement.size(@) + 1.0)

b =1. / (measurement.size(9) + 1.0)

return pyro.sample("weight", Normal(a, b))
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Inference: guide functions

Guides estimate the posterior directly:

def true_posterior_guide(measurement, guess):

a
b =

(guess + torch.sum(measurement)) / (measurement.size(9) + 1.0)
1. / (measurement.size(0) + 1.0)

return pyro.sample("weight", Normal(a, b))

UBER
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Inference: intractability

In most interesting models, the true posterior cannot be computed by hand

def scale(guess):

weight = pyro.sample("weight", Normal(guess, 1.0))

return pyro.sample("measurement”, Normal(weight, ©.75))

Spot the difference!

def intractable scale(guess):

weight = pyro.sample("weight", Normal(guess, 1.0))

return pyro.sample("measurement"”, Normal(fn(weight), 0.75))
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Inference as optimization

Instead of one guide, we could guess an entire parametrized family:

UBER Variational Bayes and Beyond: Bayesian Inference for Big Data, Broderick, T.



http://www.tamarabroderick.com/tutorial_2018_icml.html

Inference as optimization

Instead of one guide, we could guess an entire parametrized family:

def parametrized guide(guess):
a = pyro.param("a", torch.tensor(torch.randn(1) + guess.detach()))
b = pyro.param("b", torch.randn(1), constraint=constraints.positive)

return pyro.sample("weight", Normal(a, b))

UBER




Inference as optimization

We search for the best guide by optimizing parameters with a loss function:

p(0ly)
o

CLOSE

UBER Variational Bayes and Beyond: Bayesian Inference for Big Data, Broderick, T.



http://www.tamarabroderick.com/tutorial_2018_icml.html

Inference as optimization

We search for the best guide by optimizing parameters with a loss function
using a light wrapper over PyTorch’s stochastic gradient descent optimizer:

svi = pyro.infer.SVI(model=conditioned_scale,
guide=parametrized guide,
optim=pyro.optim.SGD({"1r": ©.001}),
loss=pyro.infer.Trace ELBO(...))

ELBO

for t in range(1000): 15
svi.step(guess)

UBER
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Why build Pyro around inference as optimization?

Revisiting our design principles:

Express rich models: not constrained by needing to know lots of integrals

Scalable to large models and large datasets: gradient-based optimizers work
in high dimensions, stochastic optimizers use minibatches of data and latents

Flexible guide programs offer large a surface area for incorporating
knowledge and troubleshooting software or statistical failures
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Recap

A whirlwind tour of some recent breakthroughs in Al research
The case for probabilistic programming, and for Pyro
Building up models as probabilistic programs

Inference: fitting Pyro programs to observed data

ok~ b~

Inference as optimization in Pyro

Coming up: an introduction to Bayesian machine learning in Pyro
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http://pyro.ai/

Would you like to know more?

Pyro tutorials web page: http://pyro.ai/lexamples/index.html
Detailed walkthrough of Pyro implementation of VAE:

http://pyro.ai/examples/vae.html

Deep dive into the math and implementation of stochastic variational inference in Pyro:

http://pyro.ai/examples/svi_part i.html

Detailed description of tensor and distribution shapes and broadcasting in Pyro:

http://pyro.ai/examples/tensor shapes.html
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Discussion: implications of Pyro’s design

Pyro is homoiconic: inference algorithms are Pyro programs, and internal data structures like
Traces are ordinary Pyro objects, enabling nested inference and metainference

Pyro code really is just Python code: same ecosystem and runtime performance, so making
Pyro programs faster or more efficient is no different from optimizing any other Python code

Programmability allows for automation: parts of Pyro left up to user specification, like names
or guides, can be targeted for automatic generation without affecting the rest of Pyro
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