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Introduction to Probabilistic Programming:
Models and Inference in Pyro



1. Why probabilistic modelling for AI and machine learning?
2. Why probabilistic programming? Why Pyro?
3. Building up models as probabilistic programs
4. Inference: fitting Pyro programs to observed data

Based on the following Pyro tutorials:

• Models in Pyro: http://pyro.ai/examples/intro_part_i.html
• Inference in Pyro: http://pyro.ai/examples/intro_part_ii.html

http://pyro.ai/examples/intro_part_i.html
http://pyro.ai/examples/intro_part_ii.html


Human-level concept learning through 
probabilistic program induction, Lake et al.



Neural Scene Representation and Rendering, Eslami et al.



Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning, Wu et al.



Automatic Construction and Natural-Language Description of 
Nonparametric Regression Models, Lloyd et al.



(h/t Zoubin)





Scalability: inference in high-dimensional models and large datasets 
requires high-performance algorithms and systems

Flexibility: advanced models require model-specific runtime behavior 
or inference algorithms that are difficult to implement in PPLs



Expressivity: writing rich models quickly and concisely requires 
languages with advanced control flow, modularity, and tooling

Scalability: inference in high-dimensional models and large datasets 
requires high-performance algorithms and systems

Flexibility: advanced models require model-specific runtime behavior 
or inference algorithms that are difficult to implement in PPLs



Pyro is expressive:

● Models are functions with arbitrary Python code, including all control flow
● Pyro primitives for: sampling, observation, and learnable parameters

Pyro is scalable:

● Variational method takes a model and an inference model (or guide) and optimizes 
Evidence Lower Bound, with advanced features like subsampling and variance reduction

● High-performance automatic differentiation and tensor math with PyTorch

Pyro is flexible:

● Guides are arbitrary programs, allowing injection of knowledge or easy troubleshooting
● Inference algorithms built with Poutine, an extensible, hackable, composable library of 

declarative building blocks for modifying the behavior of probabilistic programs



Probabilistic programs are regular programs that call stochastic functions:

def weather(p_cloudy):

    is_cloudy = torch.distributions.Bernoulli(p_cloudy).sample()

    if is_cloudy:

        loc, scale = 55.0, 10.0

    else:

        loc, scale = 75.0, 15.0

    temperature = torch.distributions.Normal(loc, scale).sample()

    return is_cloudy, temperature



Pyro code is just Python with stochastic calls wrapped in pyro.sample:

def weather(p_cloudy):

    is_cloudy = pyro.sample("is_cloudy", pyro.distributions.Bernoulli(p_cloudy))

    if is_cloudy:

        loc, scale = 55.0, 10.0

    else:

        loc, scale = 75.0, 15.0

    temperature = pyro.sample("temp", pyro.distributions.Normal(loc, scale))

    return is_cloudy, temperature



Pyro programs can be composed freely, if sample site names are unique:

def ice_cream_sales():

    is_cloudy, temperature = weather(0.3)

    if not is_cloudy and temperature > 80.0:

        expected_sales = 200.

    else:

        expected_sales = 50.

    return pyro.sample('sales', Normal(expected_sales, 10.0))



def scale(guess):

    weight = pyro.sample("weight", Normal(guess, 1.0))

    return pyro.sample("measurement", Normal(weight, 0.75))



def scale(guess):

    weight = pyro.sample("weight", Normal(guess, 1.0))

    return pyro.sample("measurement", Normal(weight, 0.75))



Conditioning fixes the value of sample statements:

def conditioned_scale(guess):

    weight = pyro.sample("weight", Normal(guess, 1.0))

    return pyro.sample("measurement", Normal(weight, 0.75), obs=9.5)

Equivalent to:

conditioned_scale = pyro.condition(scale, data={"measurement": 9.5})



Inference algorithms compute the distribution of unconstrained sites:

conditioned_scale = pyro.condition(scale, data={"measurement": 9.5})

posterior = pyro.infer.Importance(conditioned_scale, num_samples=1000)

marginal = pyro.infer.EmpiricalMarginal(posterior.run(8.5), sites="weight")



We can do inference by building a model of the posterior:

def conditioned_scale(guess):

    weight = pyro.sample("weight", Normal(guess, 1.0))

    return pyro.sample("measurement", Normal(weight, 0.75), obs=9.5)

def guide(guess):

    return pyro.sample("weight", ...)



The scale model is so simple that the true posterior can be computed by hand:

def deferred_conditioned_scale(measurement, guess):

    return pyro.condition(scale, data={"measurement": measurement})(guess)

def true_posterior_guide(measurement, guess):

    a = (guess + torch.sum(measurement)) / (measurement.size(0) + 1.0)

    b = 1. / (measurement.size(0) + 1.0)

    return pyro.sample("weight", Normal(a, b))



Guides estimate the posterior directly:

def true_posterior_guide(measurement, guess):

    a = (guess + torch.sum(measurement)) / (measurement.size(0) + 1.0)

    b = 1. / (measurement.size(0) + 1.0)

    return pyro.sample("weight", Normal(a, b))



In most interesting models, the true posterior cannot be computed by hand

def scale(guess):

    weight = pyro.sample("weight", Normal(guess, 1.0))

    return pyro.sample("measurement", Normal(weight, 0.75))

Spot the difference!

def intractable_scale(guess):

    weight = pyro.sample("weight", Normal(guess, 1.0))

    return pyro.sample("measurement", Normal(fn(weight), 0.75))



Instead of one guide, we could guess an entire parametrized family:

Variational Bayes and Beyond: Bayesian Inference for Big Data, Broderick, T.

http://www.tamarabroderick.com/tutorial_2018_icml.html


Instead of one guide, we could guess an entire parametrized family:

def parametrized_guide(guess):

    a = pyro.param("a", torch.tensor(torch.randn(1) + guess.detach()))

    b = pyro.param("b", torch.randn(1), constraint=constraints.positive)

    return pyro.sample("weight", Normal(a, b))



We search for the best guide by optimizing parameters with a loss function:

Variational Bayes and Beyond: Bayesian Inference for Big Data, Broderick, T.

http://www.tamarabroderick.com/tutorial_2018_icml.html


We search for the best guide by optimizing parameters with a loss function 
using a light wrapper over PyTorch’s stochastic gradient descent optimizer:

svi = pyro.infer.SVI(model=conditioned_scale,

                     guide=parametrized_guide,

                     optim=pyro.optim.SGD({"lr": 0.001}),

                     loss=pyro.infer.Trace_ELBO(...))

for t in range(1000):

    svi.step(guess)



Revisiting our design principles:

Express rich models: not constrained by needing to know lots of integrals

Scalable to large models and large datasets: gradient-based optimizers work 
in high dimensions, stochastic optimizers use minibatches of data and latents

Flexible guide programs offer large a surface area for incorporating 
knowledge and troubleshooting software or statistical failures



1. A whirlwind tour of some recent breakthroughs in AI research 
2. The case for probabilistic programming, and for Pyro
3. Building up models as probabilistic programs
4. Inference: fitting Pyro programs to observed data
5. Inference as optimization in Pyro

Coming up: an introduction to Bayesian machine learning in Pyro



pyro.ai

Eli Bingham JP Chen Martin Jankowiak

Theo Karaletsos Fritz Obermeyer Neeraj Pradhan

Rohit Singh Paul Szerlip Noah Goodman

http://pyro.ai/


Pyro tutorials web page: http://pyro.ai/examples/index.html 
Detailed walkthrough of Pyro implementation of VAE:

http://pyro.ai/examples/vae.html

Deep dive into the math and implementation of stochastic variational inference in Pyro:

http://pyro.ai/examples/svi_part_i.html

Detailed description of tensor and distribution shapes and broadcasting in Pyro:

http://pyro.ai/examples/tensor_shapes.html

http://pyro.ai/examples/index.html
http://pyro.ai/examples/vae.html
http://pyro.ai/examples/svi_part_i.html
http://pyro.ai/examples/tensor_shapes.html


Pyro is homoiconic: inference algorithms are Pyro programs, and internal data structures like 
Traces are ordinary Pyro objects, enabling nested inference and metainference

Pyro code really is just Python code: same ecosystem and runtime performance, so making 
Pyro programs faster or more efficient is no different from optimizing any other Python code

Programmability allows for automation: parts of Pyro left up to user specification, like names 
or guides, can be targeted for automatic generation without affecting the rest of Pyro


