

Introduction to Probabilistic Programming:
Models and Inference in Pyro

In this tutorial:

- Why probabilistic modelling for AI and machine learning?
- 2. Why probabilistic programming? Why Pyro?
- 3. Building up models as probabilistic programs
- 4. Inference: fitting Pyro programs to observed data

Based on the following Pyro tutorials:

- Models in Pyro: http://pyro.ai/examples/intro_part_i.html
- Inference in Pyro: http://pyro.ai/examples/intro part ii.html

Human-level concept learning through probabilistic program induction, Lake et al.

Neural Scene Representation and Rendering, Eslami et al.

Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning, Wu et al.

Automatic Construction and Natural-Language Description of Nonparametric Regression Models, Lloyd et al.

Probabilistic inference

Everything follows from two simple rules:

Sum rule: $P(x) = \sum_{y} P(x, y)$

Product rule: P(x,y) = P(x)P(y|x)

$$P(\theta|\mathcal{D}) = \frac{P(\mathcal{D}|\theta)P(\theta)}{P(\mathcal{D})} \qquad \begin{array}{c} P(\mathcal{D}|\theta) & \text{likelihood of } \theta \\ P(\theta) & \text{prior probability of } \theta \\ P(\theta|\mathcal{D}) & \text{posterior of } \theta \text{ given } \mathcal{D} \end{array}$$

Probabilistic programming languages

Probabilistic models: Representation of uncertain knowledge and reasoning.

Programming languages: Uniform, universal specification of process, with high-level abstractions.

Recipe:

A nice high-level PL,

Distribution objects,

Sample statements,

Condition, to affect weight of execution traces,

Inference to compute posterior and marginal distributions.

Why aren't we building everything with PPLs?

Scalability: inference in high-dimensional models and large datasets requires high-performance algorithms and systems

Flexibility: advanced models require model-specific runtime behavior or inference algorithms that are difficult to implement in PPLs

 $\mathsf{U} \mathsf{B} \mathsf{E} \mathsf{R}$

Why aren't we building everything with PPLs?

Expressivity: writing rich models quickly and concisely requires languages with advanced control flow, modularity, and tooling

Scalability: inference in high-dimensional models and large datasets requires high-performance algorithms and systems

Flexibility: advanced models require model-specific runtime behavior or inference algorithms that are difficult to implement in PPLs

Pyro: A Deep Universal PPL

Pyro is **expressive**:

- Models are functions with arbitrary Python code, including all control flow
- Pyro primitives for: sampling, observation, and learnable parameters

Pyro is **scalable**:

- Variational method takes a model and an inference model (or *guide*) and optimizes
 Evidence Lower Bound, with advanced features like subsampling and variance reduction
- High-performance automatic differentiation and tensor math with PyTorch

Pyro is **flexible**:

- Guides are arbitrary programs, allowing injection of knowledge or easy troubleshooting
- Inference algorithms built with Poutine, an extensible, hackable, composable library of declarative building blocks for modifying the behavior of probabilistic programs

Probabilistic programs

Probabilistic programs are regular programs that call stochastic functions:

```
def weather(p cloudy):
    is cloudy = torch.distributions.Bernoulli(p cloudy).sample()
   if is_cloudy:
        loc, scale = 55.0, 10.0
    else:
        loc, scale = 75.0, 15.0
    temperature = torch.distributions.Normal(loc, scale).sample()
    return is cloudy, temperature
```

Writing probabilistic programs in Pyro

Pyro code is just Python with stochastic calls wrapped in pyro.sample:

```
def weather(p cloudy):
    is cloudy = pyro.sample("is cloudy", pyro.distributions.Bernoulli(p cloudy))
    if is cloudy:
        loc, scale = 55.0, 10.0
    else:
        loc, scale = 75.0, 15.0
    temperature = pyro.sample("temp", pyro.distributions.Normal(loc, scale))
    return is cloudy, temperature
```

Composing probabilistic programs in Pyro

Pyro programs can be composed freely, if sample site names are unique:

```
def ice_cream_sales():
    is cloudy, temperature = weather(0.3)
    if not is cloudy and temperature > 80.0:
        expected sales = 200.
    else:
        expected sales = 50.
    return pyro.sample('sales', Normal(expected sales, 10.0))
```

Even simpler example: noisy scale

```
def scale(guess):
    weight = pyro.sample("weight", Normal(guess, 1.0))
    return pyro.sample("measurement", Normal(weight, 0.75))
```


Inference: what measurements would we expect?

```
def scale(guess):
    weight = pyro.sample("weight", Normal(guess, 1.0))
    return pyro.sample("measurement", Normal(weight, 0.75))
```


Inference: conditioning a model on data

Conditioning fixes the value of sample statements:

```
def conditioned_scale(guess):
    weight = pyro.sample("weight", Normal(guess, 1.0))
    return pyro.sample("measurement", Normal(weight, 0.75), obs=9.5)
```

Equivalent to:

```
conditioned_scale = pyro.condition(scale, data={"measurement": 9.5})
```


Inference: conditioning a model on data

Inference algorithms compute the distribution of unconstrained sites:

```
conditioned_scale = pyro.condition(scale, data={"measurement": 9.5})

posterior = pyro.infer.Importance(conditioned_scale, num_samples=1000)

marginal = pyro.infer.EmpiricalMarginal(posterior.run(8.5), sites="weight")
```


Inference: guide functions

We can do inference by building a model of the posterior:

```
weight = pyro.sample("weight", Normal(guess, 1.0))
return pyro.sample("measurement", Normal(weight, 0.75), obs=9.5)

def guide(guess):
    return pyro.sample("weight", ...)
```

def conditioned_scale(guess):

Inference: guide functions

The scale model is so simple that the true posterior can be computed by hand:

```
def deferred_conditioned_scale(measurement, guess):
    return pyro.condition(scale, data={"measurement": measurement})(guess)
def true posterior guide(measurement, guess):
    a = (guess + torch.sum(measurement)) / (measurement.size(0) + 1.0)
    b = 1. / (measurement.size(0) + 1.0)
    return pyro.sample("weight", Normal(a, b))
```

Inference: guide functions

Guides estimate the posterior directly:

```
def true_posterior_guide(measurement, guess):
    a = (guess + torch.sum(measurement)) / (measurement.size(0) + 1.0)
    b = 1. / (measurement.size(0) + 1.0)
    return pyro.sample("weight", Normal(a, b))
```


Inference: intractability

In most interesting models, the true posterior cannot be computed by hand

```
def scale(guess):
    weight = pyro.sample("weight", Normal(guess, 1.0))
    return pyro.sample("measurement", Normal(weight, 0.75))
```

Spot the difference!

```
def intractable_scale(guess):
    weight = pyro.sample("weight", Normal(guess, 1.0))
    return pyro.sample("measurement", Normal(fn(weight), 0.75))
```


Instead of one guide, we could guess an entire parametrized family:

Instead of one guide, we could guess an entire parametrized family:

```
def parametrized_guide(guess):
    a = pyro.param("a", torch.tensor(torch.randn(1) + guess.detach()))
    b = pyro.param("b", torch.randn(1), constraint=constraints.positive)
    return pyro.sample("weight", Normal(a, b))
```


We search for the best guide by optimizing parameters with a loss function:

We search for the best guide by optimizing parameters with a loss function using a light wrapper over PyTorch's stochastic gradient descent optimizer:

for t in range(1000):
 svi.step(guess)

Why build Pyro around inference as optimization?

Revisiting our design principles:

Express rich models: not constrained by needing to know lots of integrals

Scalable to large models and large datasets: gradient-based optimizers work in high dimensions, stochastic optimizers use minibatches of data and latents

Flexible guide programs offer large a surface area for incorporating knowledge and troubleshooting software or statistical failures

Recap

- A whirlwind tour of some recent breakthroughs in AI research
- 2. The case for probabilistic programming, and for Pyro
- 3. Building up models as probabilistic programs
- 4. Inference: fitting Pyro programs to observed data
- 5. Inference as optimization in Pyro

Coming up: an introduction to Bayesian machine learning in Pyro

pyro.ai

Eli Bingham

JP Chen

Martin Jankowiak

Du Phan

Theo Karaletsos

Paul Szerlip

Noah Goodman

Rohit Singh

Would you like to know more?

Pyro tutorials web page: http://pyro.ai/examples/index.html

Detailed walkthrough of Pyro implementation of VAE:

http://pyro.ai/examples/vae.html

Deep dive into the math and implementation of stochastic variational inference in Pyro:

http://pyro.ai/examples/svi_part_i.html

Detailed description of tensor and distribution shapes and broadcasting in Pyro:

http://pyro.ai/examples/tensor_shapes.html

UBFR

Discussion: implications of Pyro's design

Pyro is **homoiconic**: inference algorithms are Pyro programs, and internal data structures like Traces are ordinary Pyro objects, enabling nested inference and metainference

Pyro code really is **just Python code**: same ecosystem and runtime performance, so making Pyro programs faster or more efficient is no different from optimizing any other Python code

Programmability allows for **automation**: parts of Pyro left up to user specification, like names or guides, can be targeted for automatic generation without affecting the rest of Pyro