ﬂ Pyro

Introduction to Probabilistic Programming:
Models and Inference in Pyro

4" ¢ UBER Al Labs

In this tutorial:

Why probabilistic modelling for Al and machine learning?
Why probabilistic programming? Why Pyro?

Building up models as probabilistic programs

Inference: fitting Pyro programs to observed data

R

Based on the following Pyro tutorials:

* Models in Pyro: http://pyro.ai/examples/intro_part_i.html
* Inference in Pyro: http://pyro.ai/examples/intro_part_ii.html

UBER

http://pyro.ai/examples/intro_part_i.html
http://pyro.ai/examples/intro_part_ii.html

Probabilistic Modeling in Al: Frontiers
i) ii)

To=

e9 |9 P00 33

Z Q) [|2 dY l
T2 |3 @

= 0|5 o ’éf

i vy ()60 B3|
)Zf GlsTa e
2 |
tg, £

Y |%

Human-level concept learning through
probabilistic program induction, Lake et al.

UBER

Probabilistic Modeling in Al: Frontiers

Observation 1

Neural scene
representation

r
A \

O

2
f

Latent

?

Rendering steps

.

h,

\4

Query

Predicted
view

h2 L ... —] hL

v

1

Observation 2 Observation 3

Representation network f

Neural Scene Representation and Rendering, Eslami et al.

UBER

Generation network g

Probabilistic Modeling in Al: Frontiers

o501 ' [[Human
Physical object i EGalileo
) []Uniform
- Mass (m) > 200 - N N N N N N e |
- Friction coefficient (k) >
- 3D shape (S) c 150
- Position offset (x) £
Ly
Draw two o
physical objects T

3D Physics engine

Simulated velocities (vs, , vs,)

Likelihood function

Observed velocities (vo, , Vo,)

Tracking algorithm

/J\

Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning, Wu et al.

UBER

Probabilistic Modeling in Al: Frontiers

OO uncartany Bt for canponant 2

400
l

This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained
from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82%
from 0.18 to 0.15.

Postencr o component 4 Zum of components e (o companent 4

|max

o JV”\H'MHM, il
os J f ACF Pertodogram
-as e b min min loc max max loc
o 10 0.502 0.582 | 0.341 0413
16,0 1o 170 mee tam 1900 1@me meo 0.802 0.199 0.558 0.630

R O N N e

0.251 0475 | 0.799 0.447
0.527 0.503 0.504 0481
(0.493 0477 | 0.503 0487

Automatic Construction and Natural-Language Description of
Nonparametric Regression Models, Lloyd et al.

UBER

Probabilistic inference

FEverything follows from two simple rules:
Sum rule: P(z) =) P(z,y)
Product rule: P(x,y) = P(x)P(y|x)

D|0)P(0) P(D|#) likelihood of 6
P(D) P(0) prior probability of 6
P(0|D) posterior of § given D

Py = 2

UBER (h/t Zoubin)

Probabilistic programming languages

Probabilistic models: Representation of
uncertain knowledge and reasoning.

+

Programming languages: Uniform, universal
specification of process, with high-level
abstractions.

UBER

Recipe:

A nice high-level PL,

Distribution objects,

Sample statements,

Condition, to affect weight of execution traces,

Inference to compute posterior and marginal
distributions.

Why aren’t we building everything with PPLs?

Scalability: inference in high-dimensional models and large datasets
requires high-performance algorithms and systems

Flexibility: advanced models require model-specific runtime behavior
or inference algorithms that are difficult to implement in PPLs

UBER

Why aren’t we building everything with PPLs?

Expressivity: writing rich models quickly and concisely requires
languages with advanced control flow, modularity, and tooling

Scalability: inference in high-dimensional models and large datasets
requires high-performance algorithms and systems

Flexibility: advanced models require model-specific runtime behavior
or inference algorithms that are difficult to implement in PPLs

UBER

Pyro: A Deep Universal PPL

Pyro is expressive:

e Models are functions with arbitrary Python code, including all control flow
e Pyro primitives for: sampling, observation, and learnable parameters

Pyro is scalable:

e Variational method takes a model and an inference model (or guide) and optimizes
Evidence Lower Bound, with advanced features like subsampling and variance reduction
e High-performance automatic differentiation and tensor math with PyTorch

Pyro is flexible:

e (Guides are arbitrary programs, allowing injection of knowledge or easy troubleshooting
e Inference algorithms built with Poutine, an extensible, hackable, composable library of
declarative building blocks for modifying the behavior of probabilistic programs

UBER

Probabilistic programs

Probabilistic programs are regular programs that call stochastic functions:

def weather(p_cloudy):
is _cloudy = torch.distributions.Bernoulli(p_cloudy).sample()

if is cloudy:

loc, scale 55.0, 10.0

else:

loc, scale 75.0, 15.0

temperature = torch.distributions.Normal(loc, scale).sample()

return is_cloudy, temperature

UBER

Writing probabilistic programs in Pyro

Pyro code is just Python with stochastic calls wrapped in pyro.sample:

def weather(p_cloudy):

is cloudy = pyro.sample("is cloudy", pyro.distributions.Bernoulli(p_cloudy))

if is cloudy:

loc, scale 55.0, 10.0
else:

loc, scale 75.0, 15.0

temperature = pyro.sample("temp", pyro.distributions.Normal(loc, scale))
return is_cloudy, temperature

UBER

Composing probabilistic programs in Pyro

Pyro programs can be composed freely, if sample site names are unique:

def ice cream sales():
is cloudy, temperature = weather(0.3)

if not is cloudy and temperature > 80.0:
200.

expected sales

else:

expected sales 50.

return pyro.sample('sales', Normal(expected sales, 10.0))

UBER

Even simpler example: noisy scale

def scale(guess):
weight = pyro.sample("weight", Normal(guess, 1.9))
return pyro.sample("measurement”, Normal(weight, ©.75))

UBER

Inference: what measurements would we expect?

def scale(guess):
weight = pyro.sample("weight"”, Normal(guess, 1.9))
return pyro.sample("measurement”, Normal(weight, ©.75))

P(measurement | guess) ‘

UBER o0 |

weight

Inference: conditioning a model on data

Conditioning fixes the value of sample statements:

def conditioned scale(guess):
weight

pyro.sample("weight", Normal(guess, 1.0))
return pyro.sample("measurement", Normal(weight, ©.75), obs=9.5)

Equivalent to:

conditioned scale = pyro.condition(scale, data={"measurement": 9.5})

UBER

Inference: conditioning a model on data

Inference algorithms compute the distribution of unconstrained sites:
conditioned_scale = pyro.condition(scale, data={"measurement": 9.5})

posterior = pyro.infer.Importance(conditioned_scale, num_samples=1000)
marginal = pyro.infer.EmpiricalMarginal(posterior.run(8.5), sites="weight")

P(weight | measurement, guess)

UBER T I

weight

Inference: guide functions

We can do inference by building a model of the posterior:

def conditioned scale(guess):
weight = pyro.sample("weight", Normal(guess, 1.9))
return pyro.sample("measurement", Normal(weight, ©.75), obs=9.5)

def guide(guess):
return pyro.sample("weight", ...)

UBER

Inference: guide functions

The scale model is so simple that the true posterior can be computed by hand:

def deferred_conditioned_scale(measurement, guess):

return pyro.condition(scale, data={"measurement": measurement})(guess)

def true_posterior_guide(measurement, guess):
a

(guess + torch.sum(measurement)) / (measurement.size(@) + 1.0)

b =1. / (measurement.size(9) + 1.0)

return pyro.sample("weight", Normal(a, b))

UBER

Inference: guide functions

Guides estimate the posterior directly:

def true_posterior_guide(measurement, guess):

a
b =

(guess + torch.sum(measurement)) / (measurement.size(9) + 1.0)
1. / (measurement.size(0) + 1.0)

return pyro.sample("weight", Normal(a, b))

UBER

P(weight | measurement, guess)

weight

Inference: intractability

In most interesting models, the true posterior cannot be computed by hand

def scale(guess):

weight = pyro.sample("weight", Normal(guess, 1.0))

return pyro.sample("measurement”, Normal(weight, ©.75))

Spot the difference!

def intractable scale(guess):

weight = pyro.sample("weight", Normal(guess, 1.0))

return pyro.sample("measurement"”, Normal(fn(weight), 0.75))

UBER

Inference as optimization

Instead of one guide, we could guess an entire parametrized family:

UBER Variational Bayes and Beyond: Bayesian Inference for Big Data, Broderick, T.

http://www.tamarabroderick.com/tutorial_2018_icml.html

Inference as optimization

Instead of one guide, we could guess an entire parametrized family:

def parametrized guide(guess):
a = pyro.param("a", torch.tensor(torch.randn(1) + guess.detach()))
b = pyro.param("b", torch.randn(1), constraint=constraints.positive)

return pyro.sample("weight", Normal(a, b))

UBER

Inference as optimization

We search for the best guide by optimizing parameters with a loss function:

p(0ly)
o

CLOSE

UBER Variational Bayes and Beyond: Bayesian Inference for Big Data, Broderick, T.

http://www.tamarabroderick.com/tutorial_2018_icml.html

Inference as optimization

We search for the best guide by optimizing parameters with a loss function
using a light wrapper over PyTorch’s stochastic gradient descent optimizer:

svi = pyro.infer.SVI(model=conditioned_scale,
guide=parametrized guide,
optim=pyro.optim.SGD({"1r": ©.001}),
loss=pyro.infer.Trace ELBO(...))

ELBO

for t in range(1000): 15
svi.step(guess)

UBER

0 200 400 600 800 1000
step

Why build Pyro around inference as optimization?

Revisiting our design principles:

Express rich models: not constrained by needing to know lots of integrals

Scalable to large models and large datasets: gradient-based optimizers work
in high dimensions, stochastic optimizers use minibatches of data and latents

Flexible guide programs offer large a surface area for incorporating
knowledge and troubleshooting software or statistical failures

UBER

Recap

A whirlwind tour of some recent breakthroughs in Al research
The case for probabilistic programming, and for Pyro
Building up models as probabilistic programs

Inference: fitting Pyro programs to observed data

ok~ b~

Inference as optimization in Pyro

Coming up: an introduction to Bayesian machine learning in Pyro

UBER

Eli Bingham

Theo Karaletsos

Rohit Singh

JP Chen

Paul Szerlip

Martin Jankowiak

Neeraj Pradhan

Noah Goodman

Special thanks to

Paul Horsfall
Dustin Tran
Soumith Chintala
Adam Paszke
Du Phan

http://pyro.ai/

Would you like to know more?

Pyro tutorials web page: http://pyro.ai/lexamples/index.html
Detailed walkthrough of Pyro implementation of VAE:

http://pyro.ai/examples/vae.html

Deep dive into the math and implementation of stochastic variational inference in Pyro:

http://pyro.ai/examples/svi_part i.html

Detailed description of tensor and distribution shapes and broadcasting in Pyro:

http://pyro.ai/examples/tensor shapes.html

UBER

http://pyro.ai/examples/index.html
http://pyro.ai/examples/vae.html
http://pyro.ai/examples/svi_part_i.html
http://pyro.ai/examples/tensor_shapes.html

Discussion: implications of Pyro’s design

Pyro is homoiconic: inference algorithms are Pyro programs, and internal data structures like
Traces are ordinary Pyro objects, enabling nested inference and metainference

Pyro code really is just Python code: same ecosystem and runtime performance, so making
Pyro programs faster or more efficient is no different from optimizing any other Python code

Programmability allows for automation: parts of Pyro left up to user specification, like names
or guides, can be targeted for automatic generation without affecting the rest of Pyro

UBER

