

Deep Probabilistic Programming 101: The Variational Autoencoder

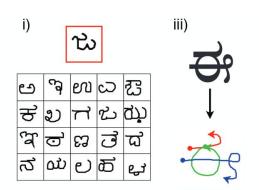
In this tutorial:

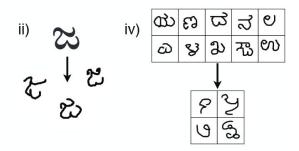
- Introduction to deep generative models and model learning
- 2. Implementing a simple deep generative model with Pyro
- 3. Performing variational inference with model learning in the VAE
- 4. A brief look at how inference algorithms are implemented in Pyro

Based on the following Pyro tutorials:

- Variational Autoencoders: http://pyro.ai/examples/vae.html
- Intro to SVI: http://pyro.ai/examples/svi part i.html

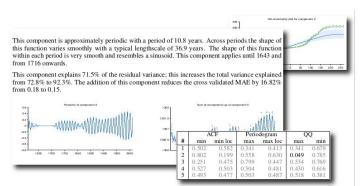
Probabilistic Modelling in Al: Frontiers



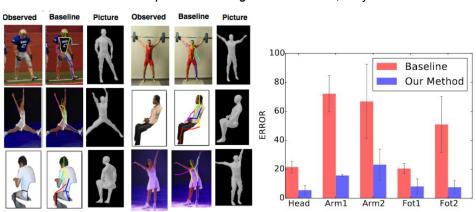


Human-level concept learning through probabilistic program induction, Lake et al.

UBER

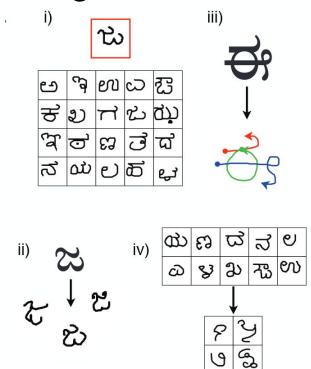


Automatic Construction and Natural-Language Description of Nonparametric Regression Models, Lloyd et al.

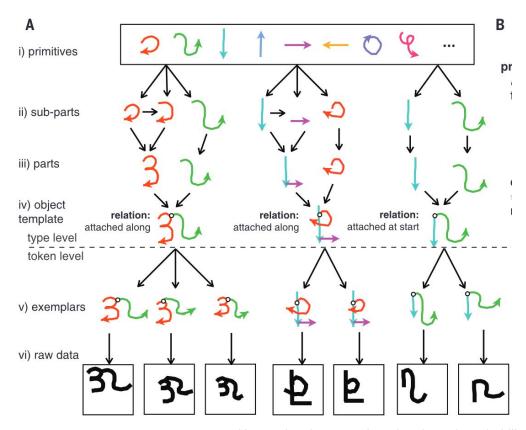


Picture: A Probabilistic Programming Language for Scene Perception, Kulkarni et al.

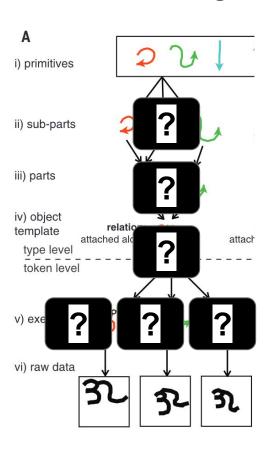
Probabilistic Modelling in Al: Frontiers



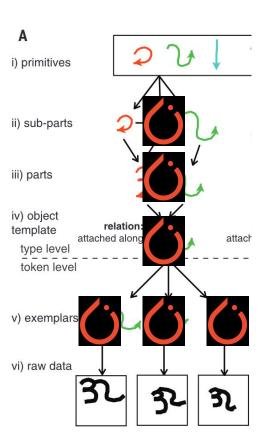
Probabilistic Modelling in Al: Frontiers



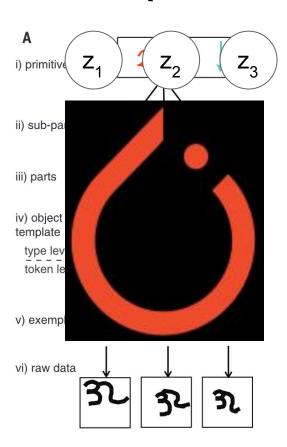
What if we can't write down a good model?



Deep generative models



Decoder network: the simplest deep generative model



Model learning

We want to maximize the probability that a model $p(\mathbf{x}, \mathbf{z})$ generates data \mathbf{x} :

$$\log p_{ heta}(x) = \log \int\! d\mathbf{z}\; p_{ heta}(\mathbf{x},\mathbf{z})$$

But computing this integral directly is too difficult for most interesting models

Model learning and variational inference

Recall the definition of the ELBO from the previous tutorial:

ELBO =
$$C - \text{KL}(q_{\phi}(\mathbf{z})||p(\mathbf{z}|x))$$

It turns out that the constant C is exactly the model log-evidence log p(x):

ELBO =
$$\log p_{\theta}(x) - \text{KL}(q_{\phi}(\mathbf{z})||p_{\theta}(\mathbf{z}|x))$$

Model learning and variational inference

Recall that the KL divergence is non-negative.

Then the ELBO is a *lower bound* to the model's log *evidence* for any guide q:

ELBO
$$\leq \log p_{\theta}(x)$$

So we can learn a model by optimizing its parameters wrt the ELBO

Data: MNIST handwritten digits

```
347

956

147

1506

1506

1506

1506

1506

1506

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

1606

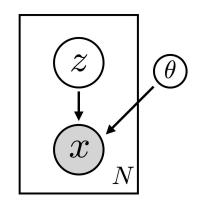
1606

160
```

Model

The decoder model samples a latent code, passes it through a neural network, and samples an observation:

```
def model():
    pyro.module("decoder", nn_decoder)
    z = pyro.sample("z", Normal(0., 1.).expand_by([20]))
    bern_prob = nn_decoder(z)
    return pyro.sample("x", Bernoulli(bern_prob))
```



Model

The neural network nn_decoder is just a standard PyTorch nn.Module:

pyro.module just calls pyro.param on each of its parameters

Guide

The simplest guide: independent Normal distributions for each datapoint

```
def guide():
    ...
    loc_z = pyro.param("loc_z", ...)
    scale_z = pyro.param("scale_z", ...)
    return pyro.sample("z", Normal(loc_z, scale_z))
```

Inference by optimization

Model learning could require learning a new guide for each model:

```
svi_guide = pyro.infer.SVI(model=conditioned_model_fixed_params, guide, ...)
svi_model = pyro.infer.SVI(model=conditioned_model, guide_fixed_params, ...)
```

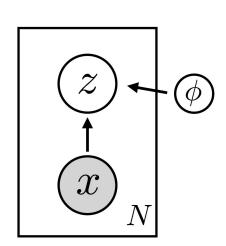
This is computationally infeasible with our mean-field guide:

```
for batch in batches:
    ...
for t in range(100):
        svi_guide.step(batch)
svi_model.step(batch)
```

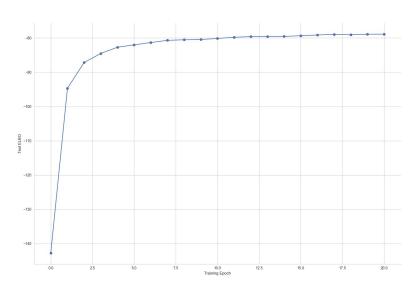
Amortized guide

Instead of optimizing new parameters from scratch for each datapoint, we train a second neural network to guess the parameters of $q(\mathbf{z} \mid \mathbf{x})$:

```
def guide(x):
    pyro.module("encoder", encoder)
    loc_z, scale_z = encoder(x)
    return pyro.sample("z", dist.Normal(loc_z, scale_z))
```

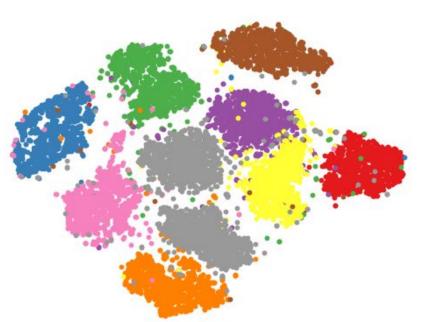


VAE: inference

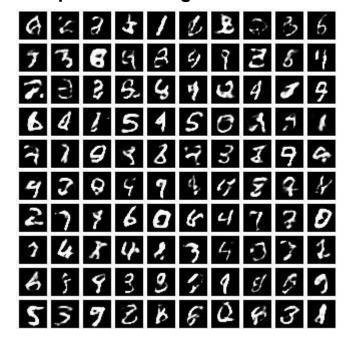


progress on elbo during training

VAE: results



samples from the generative model



Deep probabilistic programming on a postcard

```
def model():
                                                        def guide(x):
    pyro.module("decoder", decoder)
                                                            pyro.module("encoder", nn_encoder)
    z = pyro.sample("z", Normal(0., 1.).expand by([20]))
                                                            m z, s z = nn encoder(x)
    bern prob = nn decoder(z)
                                                            return pyro.sample("z", dist.Normal(m z, s z))
    return pyro.sample("x", Bernoulli(bern_prob))
def conditioned model(x):
                                                        svi = pyro.infer.SVI(model=conditioned model,
    return pyro.condition(model, data={"x": x})()
                                                                             guide=guide,
                                                                             optim=Adam({"lr": 0.001}),
                                                                             loss=pyro.infer.Trace ELBO())
nn decoder = nn.Sequential(
    nn.Linear(20, 100),
                                                        for batch in batches:
    nn.Softplus(),
                                                            svi.step(batch)
    nn.Linear(100, 784),
    nn.Sigmoid()
   UBFR
```

Estimating the ELBO

$$ext{ELBO} \equiv \mathbb{E}_{q_{\phi}(\mathbf{z})} \left[\log p_{ heta}(\mathbf{x}, \mathbf{z}) - \log q_{\phi}(\mathbf{z})
ight]$$

We keep using pyro.infer.Trace_ELBO for training guides:

```
svi = pyro.infer.SVI(..., loss=pyro.infer.Trace_ELBO())
```

Is this where all the complexity is hiding?

Poutine: building blocks for probabilistic programming

pyro.poutine: Composable higher-order functions (handlers) that compute side effects and modify behavior at sample and parameter sites

- condition: given a dict of sample site names and values, mark those sites as observed and set their outputs to the values in the dictionary
- **trace**: create a dictionary containing the inputs, functions, and outputs found at each sample and parameter site in a single execution
- **replay**: given a dictionary of sample sites and values, replace the output at each sample site with the value at that site in dictionary
- And others...

Internally, handlers install themselves on a global stack and pass messages up and down the stack at each sample and parameter site

Poutine: building blocks for probabilistic programming

pyro.poutine: Composable higher-order functions (handlers) that compute side effects and modify behavior at sample and parameter sites

- condition: given a dict of sample site names and values, mark those sites as observed and set their outputs to the values in the dictionary
- **trace**: create a dictionary containing the inputs, functions, and outputs found at each sample and parameter site in a single execution
- **replay**: given a dictionary of sample sites and values, replace the output at each sample site with the value at that site in dictionary
- And others...

Internally, handlers install themselves on a global stack and pass messages up and down the stack at each sample and parameter site

Estimating the ELBO

$$ext{ELBO} \equiv \mathbb{E}_{q_{\phi}(\mathbf{z})} \left[\log p_{ heta}(\mathbf{x}, \mathbf{z}) - \log q_{\phi}(\mathbf{z})
ight]$$

Pyro inference code can be as compact and readable as model code:

```
def simple_mc_elbo(model, guide, *args):
    guide_trace = trace(guide).get_trace(*args)
    model_trace = trace(replay(model, trace=guide_trace)).get_trace(*args)
    return model_trace.log_prob_sum() - guide_trace.log_prob_sum()
```

Estimating the ELBO

We add a negative sign, because PyTorch optimizers minimize:

```
def simple_mc_elbo(model, guide, *args):
    guide_trace = trace(guide).get_trace(*args)
    model_trace = trace(replay(model, trace=guide_trace)).get_trace(*args)
    elbo = model_trace.log_prob_sum() - guide_trace.log_prob_sum()
    return -elbo
```

This can now be used directly in place of Trace_ELBO:

```
svi = pyro.infer.SVI(..., loss=simple_mc_elbo)
```

Recap

- Introduction to deep generative models and model learning
- 2. Implemented a simple deep generative model with Pyro
- 3. Performed variational inference with model learning in the VAE
- 4. Took a brief look at how Pyro works under the hood

Coming up: building up more complex models from the VAE

pyro.ai

Eli Bingham

JP Chen

Martin Jankowiak

Du Phan

Theo Karaletsos

Paul Szerlip

Noah Goodman

Rohit Singh

Would you like to know more?

Pyro tutorials web page: http://pyro.ai/examples/index.html

Detailed walkthrough of Pyro implementation of VAE:

http://pyro.ai/examples/vae.html

Deep dive into the math and implementation of stochastic variational inference in Pyro:

http://pyro.ai/examples/svi_part_i.html

Detailed description of tensor and distribution shapes and broadcasting in Pyro:

http://pyro.ai/examples/tensor_shapes.html

UBFR