
Pyro

Deep Probabilistic Programming 101:
The Variational Autoencoder



1. Introduction to deep generative models and model learning
2. Implementing a simple deep generative model with Pyro
3. Performing variational inference with model learning in the VAE
4. A brief look at how inference algorithms are implemented in Pyro

Based on the following Pyro tutorials:

• Variational Autoencoders: http://pyro.ai/examples/vae.html 
• Intro to SVI: http://pyro.ai/examples/svi_part_i.html 

http://pyro.ai/examples/vae.html
http://pyro.ai/examples/svi_part_i.html


Human-level concept learning through 
probabilistic program induction, Lake et al.

Automatic Construction and Natural-Language Description of 
Nonparametric Regression Models, Lloyd et al.

Picture: A Probabilistic Programming Language for Scene Perception, Kulkarni et al.
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We want to maximize the probability that a model p(x, z) generates data x:

But computing this integral directly is too difficult for most interesting models



Recall the definition of the ELBO from the previous tutorial:

It turns out that the constant C is exactly the model log-evidence log p(x):



Recall that the KL divergence is non-negative.

Then the ELBO is a lower bound to the model’s log evidence for any guide q:

So we can learn a model by optimizing its parameters wrt the ELBO





The decoder model samples a latent code, passes it through 
a neural network, and samples an observation:

def model():

    pyro.module("decoder", nn_decoder)

    z = pyro.sample("z", Normal(0., 1.).expand_by([20]))

    bern_prob = nn_decoder(z)

    return pyro.sample("x", Bernoulli(bern_prob))

Auto-Encoding Variational Bayes, Diederik P Kingma, Max Welling



The neural network nn_decoder is just a standard PyTorch 
nn.Module:

nn_decoder = nn.Sequential(nn.Linear(20, 100), 

                           nn.Softplus(), 

                           nn.Linear(100, 784), 

                           nn.Sigmoid())

pyro.module just calls pyro.param on each of its parameters

Auto-Encoding Variational Bayes, Diederik P Kingma, Max Welling



The simplest guide: independent Normal distributions for each datapoint

def guide():

    ...

    loc_z = pyro.param("loc_z", ...)

    scale_z = pyro.param("scale_z", ...)

    return pyro.sample("z", Normal(loc_z, scale_z))



Model learning could require learning a new guide for each model:

svi_guide = pyro.infer.SVI(model=conditioned_model_fixed_params, guide, ...)

svi_model = pyro.infer.SVI(model=conditioned_model, guide_fixed_params, ...) 

This is computationally infeasible with our mean-field guide:

for batch in batches:

    ...

    for t in range(100):

        svi_guide.step(batch)

    svi_model.step(batch)



Instead of optimizing new parameters from scratch for each datapoint, 
we train a second neural network to guess the parameters of q(z | x):

def guide(x):

    pyro.module("encoder", encoder)

    loc_z, scale_z = encoder(x)

    return pyro.sample("z", dist.Normal(loc_z, scale_z))



svi = pyro.infer.SVI(model=conditioned_model, 

                     guide=guide, 

                     optim=Adam({"lr": 0.001}), 

                     loss=pyro.infer.Trace_ELBO())

for batch in batches:

    svi.step(batch)

progress on elbo during training



samples from the generative modellatent embedding

See our VAE tutorial for complete results

http://pyro.ai/examples/vae.html


def model():

    pyro.module("decoder", decoder)

    z = pyro.sample("z", Normal(0., 1.).expand_by([20]))

    bern_prob = nn_decoder(z)

    return pyro.sample("x", Bernoulli(bern_prob))

def conditioned_model(x):

    return pyro.condition(model, data={"x": x})()

nn_decoder = nn.Sequential(

    nn.Linear(20, 100), 

    nn.Softplus(), 

    nn.Linear(100, 784), 

    nn.Sigmoid()

)

def guide(x):

    pyro.module("encoder", nn_encoder)

    m_z, s_z = nn_encoder(x)

    return pyro.sample("z", dist.Normal(m_z, s_z))

svi = pyro.infer.SVI(model=conditioned_model, 

                     guide=guide, 

                     optim=Adam({"lr": 0.001}), 

                     loss=pyro.infer.Trace_ELBO())

for batch in batches:

    svi.step(batch)



We keep using pyro.infer.Trace_ELBO for training guides:

svi = pyro.infer.SVI(..., loss=pyro.infer.Trace_ELBO())

Is this where all the complexity is hiding?



pyro.poutine: Composable higher-order functions (handlers) that compute 
side effects and modify behavior at sample and parameter sites

• condition: given a dict of sample site names and values, mark those 
sites as observed and set their outputs to the values in the dictionary

• trace: create a dictionary containing the inputs, functions, and outputs 
found at each sample and parameter site in a single execution

• replay: given a dictionary of sample sites and values, replace the output 
at each sample site with the value at that site in dictionary

• And others…

Internally, handlers install themselves on a global stack and pass messages 
up and down the stack at each sample and parameter site
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Pyro inference code can be as compact and readable as model code:

def simple_mc_elbo(model, guide, *args):

    guide_trace = trace(guide).get_trace(*args)

    model_trace = trace(replay(model, trace=guide_trace)).get_trace(*args)

    return model_trace.log_prob_sum() - guide_trace.log_prob_sum()



We add a negative sign, because PyTorch optimizers minimize:

def simple_mc_elbo(model, guide, *args):

    guide_trace = trace(guide).get_trace(*args)

    model_trace = trace(replay(model, trace=guide_trace)).get_trace(*args)

    elbo = model_trace.log_prob_sum() - guide_trace.log_prob_sum()

    return -elbo

This can now be used directly in place of Trace_ELBO:

svi = pyro.infer.SVI(..., loss=simple_mc_elbo)



1. Introduction to deep generative models and model learning
2. Implemented a simple deep generative model with Pyro
3. Performed variational inference with model learning in the VAE
4. Took a brief look at how Pyro works under the hood

Coming up: building up more complex models from the VAE
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Pyro tutorials web page: http://pyro.ai/examples/index.html 
Detailed walkthrough of Pyro implementation of VAE:

http://pyro.ai/examples/vae.html

Deep dive into the math and implementation of stochastic variational inference in Pyro:

http://pyro.ai/examples/svi_part_i.html

Detailed description of tensor and distribution shapes and broadcasting in Pyro:

http://pyro.ai/examples/tensor_shapes.html

http://pyro.ai/examples/index.html
http://pyro.ai/examples/vae.html
http://pyro.ai/examples/svi_part_i.html
http://pyro.ai/examples/tensor_shapes.html

